Application of delayed amine hard bubble catalyst in sports venue construction: Ensure the durability and safety of site facilities

The application of delayed amine hard bubble catalyst in sports venue construction: Ensure the durability and safety of site facilities

Introduction

As a large public building, the construction quality of the sports stadium is directly related to the safety and experience of athletes and spectators. In recent years, with the continuous advancement of building materials, delayed amine hard bubble catalysts have been widely used in the construction of sports venues. This material not only improves the durability of the building structure, but also effectively enhances the safety of the site. This article will introduce in detail the characteristics, application of delayed amine hard bubble catalyst and its specific role in the construction of stadiums.

1. Overview of delayed amine hard bubble catalyst

1.1 Definition and Features

The delayed amine hard bubble catalyst is a chemical additive used in the production of polyurethane foam. Its main function is to adjust the reaction speed of the foam so that it can achieve the best foaming effect within a specific time. This catalyst has the following characteristics:

  • Delayed reaction: Can delay the reaction time after foam mixing to ensure uniform distribution of the foam.
  • High stability: It can maintain a stable catalytic effect in both high and low temperature environments.
  • Environmentality: Low volatile organic compounds (VOC) emissions, comply with environmental protection standards.

1.2 Product parameters

parameter name parameter value
Appearance Colorless to light yellow liquid
Density (25?) 1.05 g/cm³
Viscosity (25?) 50-100 mPa·s
Flashpoint >100?
Storage temperature 5-30?
Shelf life 12 months

2. Application of delayed amine hard bubble catalyst in sports venue construction

2.1 Application of site foundation layer

The foundation layer of the stadium is a key part of ensuring the stability and durability of the venue. The application of delayed amine hard bubble catalyst in the base layer is mainly reflected in the following aspects:

  • Uniform foaming: By delaying the reaction, ensure that the foam is evenly distributed in the base layer to avoid voids or uneven density.
  • Reinforcement strength: The uniform distribution of the foam can effectively improve the overall strength of the foundation layer and reduce deformation or cracking caused by external forces.

2.2 Manufacturing of stands and seats

The stands and seats are parts of the stadium that are directly in contact with the audience, and their safety and comfort are crucial. The applications of delayed amine hard bubble catalysts in stand and seat manufacturing include:

  • Shock Absorption Effect: By adjusting the density and elasticity of the foam, it provides good shock absorption effect and reduces the fatigue of the audience when watching the game for a long time.
  • Fire Resistance: The delayed amine hard bubble catalyst can improve the fire resistance of the foam and ensure the safety of the audience in an emergency.

2.3 Insulation of roof and walls

The roofs and walls of sports stadiums need to have good thermal insulation properties to cope with climate change in different seasons. The application of delayed amine hard bubble catalyst in thermal insulation materials is mainly reflected in:

  • High-efficiency insulation: By optimizing the closed-cell structure of foam, the insulation performance of insulation materials can be improved and energy consumption will be reduced.
  • Waterproof and moisture-proof: The closed-cell structure of the foam can also effectively prevent moisture penetration and extend the service life of the building.

3. Effect of delayed amine hard bubble catalyst on the durability and safety of stadiums

3.1 Improve durability

The delayed amine hard bubble catalyst significantly improves the durability of sports venues by optimizing the structure and performance of the foam. Specifically manifested in:

  • Anti-aging: Foam materials are not prone to aging during long-term use and maintain stable physical properties.
  • Impact Resistance: The high elasticity of the foam can effectively absorb impact force and reduce damage caused by external forces.

3.2 Enhanced security

Safety is the top priority in the construction of stadiums. The role of delayed amine hard bubble catalysts in enhancing safety include:

  • Fireproofing and flame retardant: reduces the risk of fire by improving the fire resistance of foam.
  • Shock Absorbing cushioning: It is used in stands and seats to effectively reduce the audience’sInjury under unexpected circumstances.

IV. Actual case analysis

4.1 Construction of the basic floor of a large stadium

In the construction of the basic layer of a large stadium, a delayed amine hard bubble catalyst is used for foam foaming. Through comparative experiments, it was found that the base layer using a retardant amine hard bubble catalyst was superior to traditional materials in terms of strength and uniformity. The specific data are as follows:

parameters Traditional Materials Retarded amine hard bubble catalyst
Compressive Strength (MPa) 0.8 1.2
Density uniformity General Excellent
Service life (years) 10 15

4.2 Manufacturing of stands and seats in a stadium

In the manufacture of stands and seats in a certain stadium, a delayed amine hard bubble catalyst is used for foam foaming. Through actual use feedback, it was found that the seats using delayed amine hard bubble catalysts were significantly improved in terms of comfort and safety. The specific data are as follows:

parameters Traditional Materials Retarded amine hard bubble catalyst
Shock Absorption Effect General Excellent
Fire Protection Level B1 A2
Service life (years) 8 12

5. Future development trends

With the continuous advancement of construction technology, the application of delayed amine hard bubble catalysts in the construction of stadiums will become more widely used. Future development trends include:

  • Intelligent Application: Through intelligent technology, the foaming process of the foam is monitored in real time to ensure good results.
  • Environmental Development: Further reduce VOC emissions and improve the environmental performance of materials.
  • Multifunctional: Develop foam materials with multiple functions, such as self-healing, antibacterial, etc., to improve the comprehensive performance of sports venues.

Conclusion

The application of delayed amine hard bubble catalyst in the construction of stadiums not only improves the durability and safety of the venue, but also provides the audience with a more comfortable and safe viewing environment. With the continuous advancement of technology, this material will play a more important role in the construction of stadiums in the future. Through rational application and continuous innovation, we can build safer, durable and environmentally friendly stadiums to provide athletes and spectators with a better experience.


The above content introduces in detail the application of delayed amine hard bubble catalyst in the construction of stadiums and its impact on the durability and safety of site facilities. Through rich tables and actual case analysis, we hope to provide readers with a comprehensive and in-depth understanding.

Extended reading:https://www.newtopchem.com/archives/765

Extended reading:https://www.bdmaee.net/wp-content/uploads/2022/08/-tmr-3-TMR-3-catalyst-?TMR.pdf

Extended reading:https://www.bdmaee.net/wp-content/uploads/2022/08/Polyurethane-reaction-inhibitor-Y2300-polyurethane-reaction-inhibitor-Y2300.pdf

Extended reading:https://www.newtopchem.com/archives/44664

Extended reading:https://www.bdmaee.net/wp-content/uploads/2021/05/1-6.jpg

Extended reading:https://www.newtopchem.com/archives/580

Extended reading:https://www.bdmaee.net/u-cat-3513n-catalyst-cas135083-58-9-sanyo-japan/

Extended reading:https://www.bdmaee.net/pc-5-hard-foam-catalyst/

Extended reading:https://www.newtopchem.com/archives/44465

Extended reading:https://www.cyclohexylamine.net/dimethyltin-oxide-cas-2273-45-2//br>