1,1-dimethylhydrazine

1,1-dimethylhydrazine structural formula

Structural formula

Business number 018F
Molecular formula C2H8N2
Molecular weight 60.08
label

None

Numbering system

CAS number:57-14-7

MDL number:MFCD00007628

EINECS number:200-316-0

RTECS number:MV2450000

BRN number:605261

PubChem number:24893497

Physical property data

1. Properties: Colorless liquid with ammonia odor, hygroscopic. [1]

2. Melting point (?): -58[2]

3. Boiling point (?): 63.9[3]

4. Relative density (water=1): 0.78 (25?)[4]

5. Relative vapor density (air = 1): 2.1[5]

6. Saturated vapor pressure (kPa): 16.4 (20?)[6]

7. Heat of combustion (kJ/mol): -1979[7]

8. Critical temperature (?): 250[8]

9. Critical pressure (MPa): 5.42[9]

10. Octanol/water partition coefficient: -1.19[10]

11. Flash point (?): -15 (CC) [11]

12 .Ignition temperature (?): 249[12]

13. Explosion limit (%): 95[13]

14. Lower explosion limit (%): 2.0[14]

15. Solubility: miscible with water, miscible with dimethylformamide, ethanol, and ether ,hydrocarbon. [15]

16. Refractive index (25ºC): 1.4508

17. Ignition point (ºC): 249

18. Heat of evaporation (KJ/mol): 35.02

19. Heat of fusion (KJ/mol): 10.08

20. Heat of generation (KJ/mol): 49.37

Toxicological data

1. Acute toxicity[16]

LD50: 122mg/kg (rat oral); 1060mg/kg (rabbit dermal )

LC50: 252ppm (rat inhalation, 4h)

2. Irritation No information available

3 .Subacute and chronic toxicity [17] Dogs inhaled 12.5mg/m3, 6 hours a day, 5 times/week, 26 weeks, weight loss and lethargy , mild anemia.

4. Mutagenicity [18] Microbial mutagenicity: Salmonella typhimurium 42 ?mol/dish. DNA repair: E. coli 600?g/dish. DNA damage: human fibroblasts 300 ?mol/L.

5. Carcinogenicity [19] IARC Carcinogenicity Comment: G2B, suspected carcinogen in humans.

Ecological data

1. Ecotoxicity[20]

LC50: 11.35mg/L (96h) (channel catfish); 7.85mg/L ( 96h) (fathead minnow, 30d); 38mg/L (24h) (water fleas)

2. Biodegradability[21]

Aerobic biodegradation (h): 192~528

Anaerobic biodegradation (h): 768~2112

3. Abiotic degradation Properties[22]

Photooxidation half-life in air (h): 0.8~7.7

Molecular structure data

1. Molar refractive index: 18.57

2. Molar volume (cm3/mol): 72.4

3. Isotonic specific volume (90.2K ): 166.4

4. Surface tension (dyne/cm): 27.8

5. Polarizability (10-24cm3): 7.36

Compute chemical data

1. Reference value for hydrophobic parameter calculation (XlogP): -0.5

2. Number of hydrogen bond donors: 1

3. Number of hydrogen bond acceptors: 2

p>

4. Number of rotatable chemical bonds: 0

5. Number of tautomers: none

6. Topological molecule polar surface area 29.3

7. Number of heavy atoms: 4

8. Surface charge: 0

9. Complexity: 11.5

10. Number of isotope atoms: 0

11. Determine the number of atomic stereocenters: 0

12. Uncertain number of atomic stereocenters: 0

13. Determine the number of chemical bond stereocenters: 0

14. Number of uncertain chemical bond stereocenters: 0

15. Number of covalent bond units: 1

Properties and stability

1. Chemical properties: It has strong reducing properties. Contact with any oxidizing agent will cause combustion and explosion. Strongly hygroscopic. It reacts with acid to form salt; reacts with nitrous acid to form dimethylamine; reacts with aldehydes and ketones to form hydrazone.

2. Highly toxic and can cause cancer. After vapor is inhaled, irritation symptoms of the nasal cavity and throat, difficulty breathing, nausea, severe vomiting and neurological symptoms, neurasthenia, unsteady gait, convulsions, coma, etc. may occur. Eye manifestations include mild conjunctivitis. The oral LD50 of white mice is 265mg/kg. The time-weighted average allowable concentration of toxic substances in the air in the workplace is 0.5mg/m3; the allowable concentration for short-term exposure is 1.5mg/m3. There is no specific antidote for poisoning, only symptomatic treatment. The U.S. Occupational Safety and Health Administration stipulates that the maximum allowable exposure concentration in the air is 1mg/m3.

3. Stability[23] Stable

4. Incompatible substances[24] Oxidants, copper and its alloys, aluminum, iron, iron salts

5. Conditions to avoid contact [25] Heating

6. Polymerization hazard[26] No polymerization

Storage method

Storage Precautions[27] Store in a cool, well-ventilated special warehouse, and implement the “two people to send and receive, and two people to keep” system. Keep away from fire and heat sources. The storage temperature should not exceed 37?. Keep container tightly sealed. They should be stored separately from oxidants, metal powders, and food chemicals, and avoid mixed storage. Use explosion-proof lighting and ventilation facilities. It is prohibited to use mechanical equipment and tools that are prone to sparks. The storage area should be equipped with emergency release equipment and suitable containment materials.

Synthesis method

1. This product can be synthesized by reacting ammonia, amine chloride and dimethylamine as raw materials. First, ammonia water and sodium hypochlorite are respectively sent to the one-step reactor for reaction to generate chlorinated amine, and then the chlorinated amine is sent to the two-step reactor to be synthesized with the dimethylamine aqueous solution to generate an aqueous solution of undimethylhydrazine, and then the synthetic liquid is sent to Enter a series of distillation towers for further distillation and distillation to remove excess ammonia, dimethylamine and partial hydrazone. After adding alkali for concentration and degassing, the finished product is obtained.

2. Preparation of N, N-dimethylhydrazine
In a 5-liter round-bottomed flask equipped with a mechanical stirrer, dropping funnel and thermometer, add 200 grams (2.7 moles) of nitrosodimethylamine, 3 liters of water and 650 grams (10 grams of atoms) 100% zinc powder. The reaction mixture was heated in a water bath to maintain the temperature at 25-30°C, and 1 liter (14 moles) of 85% acetic acid was added dropwise with stirring for about 2 hours. Then heat at 60°C for 1 hour, cool, filter out excess zinc powder, wash the combined aqueous solution with a small amount of water, place it in a 12-liter flask for steam distillation, install a dropping funnel on the flask, and add 1000 grams of hydroxide from the funnel The concentrated sodium solution makes the aqueous solution obviously alkaline, and steam distillation is carried out until the distillate has only a weak reducing effect on Fehling’s solution. About 5 to 6 liters of distillate is enough to completely take out dimethylhydrazine.
After the distillate is treated with 650 ml of concentrated hydrochloric acid, it is concentrated under reduced pressure and on a steam bath until the residue becomes slurry. The slurry is dropped onto a large excess of solid sodium hydroxide, and then distilled until the temperature rises to 100°C, a concentrated aqueous solution of dimethylhydrazine can be obtained. If potassium hydroxide is added to the concentrated aqueous solution of dimethylhydrazine, left to dry, and distilled again, the distillate is collected in a receiver containing barium hydroxide, left for a few days, and then distilled to collect the 62~65°C/765mm fraction. That is anhydrous dimethylhydrazine. If the slurry is treated with absolute ethanol, white crystals of dimethylhydrazine hydrochloride can be obtained.

Purpose

1. This product is used to produce plant growth regulators, and its phenolate can reduce the deposition of lubricating salts. It can also be used to absorb acidic gases, and can also be used as analytical reagents, high-energy fuels, and solvents.

2. Carbonyl protecting reagent. Used in numerous ring-enlarging reactions, alkylation of N, N-dimethylhydrazone, monoalkylation of ?, ?-unsaturated ketones and conversion of aldehydes into nitriles.

3. Used in chemical synthesis, as a stabilizer of organic peroxides, acid gas absorbent, and also used in photography and agriculture. [28]

extended-reading:https://www.newtopchem.com/archives/626
extended-reading:https://www.bdmaee.net/rc-catalyst-108-cas108-39-4-rhine-chemical/
extended-reading:https://www.bdmaee.net/u-cat-sa-102-catalyst-cas112051-70-6-sanyo-japan/
extended-reading:https://www.cyclohexylamine.net/cas7560-83-0/
extended-reading:https://www.cyclohexylamine.net/nnnnn-pentamethyldiethylenetriamine-pmdeta/
extended-reading:https://www.bdmaee.net/fascat8201-catalyst/
extended-reading:https://www.bdmaee.net/fentacat-d89-catalyst-cas108-13-7-solvay/
extended-reading:https://www.bdmaee.net/butyltin-trichloridembtl/
extended-reading:https://www.newtopchem.com/archives/category/products/page/96
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/-XD-104–tertiary-amine-catalyst-catalyst-XD-104.pdf

Tetramethylthiuram monosulfide

Structural formula of tetramethylthiuram monosulfide

Structural formula

Business number 02CN
Molecular formula C6H12N2S3
Molecular weight 208.37
label

Tetramethylthiodicarbonamide,

Tetramethylthiuram monosulfide,

Rubber accelerator TMTM,

Accelerator TMTM,

Bisdimethylsulfide,

Bis(dimethylthioamide) sulfide,

4-methyl-thio-2 carbon 2 amide,

4-dimethyl sulfide thiuram,

Rubber accelerator TMTM,

PromoterTMTM,

Pair of dimethyl sulfide,

Sulfide Bis (2-methylthio amide),

accelerator,

Catalysts and auxiliaries

Numbering system

CAS number:97-74-5

MDL number:MFCD00014870

EINECS number:202-605-7

RTECS number:WQ1750000

BRN number:1775650

PubChem number:24880353

Physical property data

1. Properties: yellow powder or granules

2. Relative density (g/mL, 25?): 1.39-1.40

3. Relative vapor density (g/mL , air=1): Not determined

4. Melting point (ºC): 110

5. Boiling point (ºC, normal pressure): Not determined

6 . Boiling point (ºC, kPa): Not determined

7. Refractive index: Not determined

8. Flash point (ºC): 156

9. Ratio Optical rotation (º): Not determined

10. Autoignition point or ignition temperature (ºC): Not determined

11. Vapor pressure (mmHg, ºC): Not determined

p>

12. Saturated vapor pressure (kPa, ºC): Undetermined

13. Heat of combustion (KJ/mol): Undetermined

14. Critical temperature (ºC ): Undetermined

15. Critical pressure (KPa): Undetermined

16. Log value of oil-water (octanol/water) partition coefficient: Undetermined

17. Explosion upper limit (%, V/V): Undetermined

18. Explosion lower limit (%, V/V): Undetermined

19. Solubility: Insoluble Soluble in water, gasoline, ethanol, benzene, acetone, chloroform.

Toxicological data

Acute toxicity: intraperitoneal – rat LD50: 383 mg/kg; oral – mouse LD50: 818 mg/kg

Ecological data

This substance is slightly hazardous to water.

Molecular structure data

1. Molar refractive index: 59.86

2. Molar volume (cm3/mol): 166.0

3. Isotonic specific volume (90.2K ): 465.9

4. Surface tension (dyne/cm): 62.0

5. Dielectric constant:

6. Dipole moment (10-24cm3):

7. Polarizability: 23.73

Compute chemical data

1. Reference value for hydrophobic parameter calculation (XlogP): 1.7

2. Number of hydrogen bond donors: 0

3. Number of hydrogen bond acceptors: 3

4. Number of rotatable chemical bonds: 2

5. Number of tautomers: none

6. Topological molecule polar surface area 96

7. Number of heavy atoms: 11

8. Surface charge: 0

9. Complexity: 147

10. Number of isotope atoms: 0

11. Determine the number of atomic stereocenters: 0

12. Uncertain number of atomic stereocenters: 0

13. Determine the number of chemical bond stereocenters: 0

14. Number of uncertain chemical bond stereocenters: 0

15. Number of covalent bond units: 1

Properties and stability

1. Avoid contact with strong oxidants.

2. Soluble in benzene, acetone, dichloroethane, carbon disulfide, toluene, chloroform, slightly soluble in ethanol and ether, insoluble in gasoline and water. Odorless, tasteless and non-toxic. Storage stable.

Storage method

Store in a cool, ventilated warehouse. Keep away from fire and heat sources. Protect from direct sunlight. The packaging is sealed. should be kept away from oxidizer, do not store together. Equipped with the appropriate variety and quantity of fire equipment. Suitable materials should be available in the storage area to contain spills.

Synthesis method

Add tetramethylthiuram disulfide (accelerator TMTD) and sodium cyanide to the reaction kettle, then add water and ethanol, and raise the temperature to 40-50°C with stirring to carry out desulfurization reaction. After the reaction is complete, cool down and let stand for stratification. After the oil layer is washed with water, separated and dehydrated, the finished product is obtained.

Purpose

Used as vulcanization accelerator for natural rubber and synthetic rubber.

extended-reading:https://www.cyclohexylamine.net/catalyst-pt303-high-efficiency-catalyst-pt303/
extended-reading:https://www.bdmaee.net/niax-ef-712-low-emission-tertiary-amine-catalyst-momentive/
extended-reading:https://www.bdmaee.net/non-silicone-silicone-oil/
extended-reading:https://www.newtopchem.com/archives/44045
extended-reading:https://www.cyclohexylamine.net/high-quality-triethylenediamine-cas-280-57-9-dabco-teda/
extended-reading:https://www.bdmaee.net/wp-content/uploads/2021/05/1-6.jpg
extended-reading:https://www.bdmaee.net/polyurethane-delayed-catalyst-c-225-c-225-catalyst-c-225/
extended-reading:https://www.cyclohexylamine.net/author/infobold-themes-com/
extended-reading:https://www.newtopchem.com/archives/40394
extended-reading:https://www.morpholine.org/high-quality-cas-108-01-0-nn-dimethyl-ethanolamine-2-dimethylamineethanol-dmea-dimethylethanolamine/

2-Chloropropane

2-Chloropropane Structural Formula

Structural formula

Business number 01JE
Molecular formula C3H7Cl
Molecular weight 78
label

Isopropyl chloride,

Aliphatic halogenated derivatives

Numbering system

CAS number:75-29-6

MDL number:MFCD00000867

EINECS number:200-858-8

RTECS number:TX4410000

BRN number:1730782

PubChem number:24845308

Physical property data

1. Properties: colorless transparent liquid [1]

2. Melting point (ºC): – 117.2[2]

3. Boiling point (ºC): 35.7[3]

4. Relative density (water = 1): 0.86 (20ºC) [4]

5. Relative vapor density (air=1): 2.71[5]

6. Saturated vapor pressure (kPa): 68.7 (25.5ºC) [6]

7. Heat of combustion (KJ/mol): -2014.8[ 7]

8. Critical temperature (ºC): 212[8]

9. Critical pressure (MPa): 4.72[9]

10. Octanol/water partition coefficient: 1.9[10]

11. Flash point (ºC): -32 (CC)[11]

12. Ignition temperature (ºC): 593[12]

13 . Explosion upper limit (%): 10.7[13]

14. Explosion lower limit (%): 2.8[14]

15. Solubility: Slightly soluble in water, soluble in methanol, ether and benzene. [15]

16. Volume expansion coefficient (K-1, 20ºC): 0.001591

17. Critical density ( g·cm-3): 0.325

18. Critical volume (cm3·mol-1): 242

19. Critical compression factor: 0.527

20. Eccentricity factor: 0.224

21. Heat of evaporation (KJ/mol, b.p.): 26.29

22. Heat of fusion (KJ/kg): 94.12

23. Heat of formation (KJ/mol, 25ºC, liquid): 164.1

24. Heat of combustion (KJ /mol, 25ºC, liquid): 2018.04

25. Lennard-Jones parameter (A): 8.399

26. Lennard-Jones parameter (K): 206.4

27.Solubility parameter (J·cm-3)0.5?16.455

28.van der Waals area (cm2 ·mol-1): 6.610×109

29. van der Waals volume (cm3·mol-1): 45.740

30. Liquid phase standard claims heat (enthalpy) (kJ·mol-1): -172.1

31. Liquid phase standard hot melt (J·mol-1·K-1): 133.7

32. Gas phase Standard claimed heat (enthalpy) (kJ·mol-1): -144.8

33. Gas phase standard entropy (J·mol-1·K -1): 306.05

34. Gas phase standard free energy of formation (kJ·mol-1): -61.3

35. Gas phase standard hot melt (J·mol-1·K-1): 87.56

Toxicological data

1. Acute toxicity Rat caliber LD50: 5mg/kg; Rat inhalation LC50: 120mg/m3; Mouse caliber LD50: 1300mg/kg; Mouse inhalation LCLO: 119mg/m3;

2. Other multi-dose toxicity data Rat inhalation LC50: 236 gm/m3/30M/1W-I;

3. Teratogenicity Salmonella: 1 gm/plate;

4 , has a strong anesthetic effect and damages the liver and kidneys, but…??The irritation effect on skin and mucous membranes is very light.

5. Acute toxicity[16]

LD50: 5g/kg (rat Oral); 1300mg/kg (oral in mice)

LC50: 120g/m3 (rat inhalation)

6. Irritation No information available

7. Subacute and chronic toxicity[17] Rat, Rabbits, mice, guinea pigs and monkeys inhaled 3.21g/m3, 7 hours a day, 5 days a week, 127 times. The animals all survived, with no abnormalities in growth and appearance. Some animals have pathological changes in liver and kidneys.

8. Mutagenicity[18] Microbial mutagenicity: Salmonella typhimurium 1g/dish.

Ecological data

1. Ecotoxicity No data available

2. Biodegradability No data available

3 .Non-biodegradability[19] In the air, when the concentration of hydroxyl radicals is 5.00×105/cm3, the degradation half-life is 17d (theoretical).

Molecular structure data

1. Molar refractive index: 20.75

2. Molar volume (cm3/mol): 89.8

3. Isotonic specific volume (90.2K ): 187.3

4. Surface tension (dyne/cm): 18.9

5. Polarizability (10-24cm3): 8.22

Compute chemical data

1. Reference value for hydrophobic parameter calculation (XlogP): 1.6

2. Number of hydrogen bond donors: 0

3. Number of hydrogen bond acceptors: 0

4. Number of rotatable chemical bonds: 0

5. Number of tautomers: none

6. Topological molecule polar surface area 0

7. Number of heavy atoms: 4

8. Surface charge: 0

9. Complexity: 10.8

10. Number of isotope atoms: 0

11. Determine the number of atomic stereocenters: 0

12. Uncertain number of atomic stereocenters: 0

13. Determine the number of chemical bond stereocenters: 0

14. Number of uncertain chemical bond stereocenters: 0

15. Number of covalent bond units: 1

Properties and stability

1. When burned, toxic gases such as phosgene are generated. It decomposes into propylene and hydrogen chloride at high temperature (about 400°C). Isopropyl alcohol is produced during hydrolysis. Because the chlorine atoms in its structure are very active, they can react with aromatic amines and aliphatic amines, and remove hydrogen chloride to form N-isopropyl aromatic amines and isopropyl aliphatic amines. The chlorine atoms are hydrolyzed to form isopropyl alcohol.

2. Vapor and liquid can irritate skin, eyes and respiratory system. It has an anesthetic effect at high concentrations and can depress the central nervous system. Long-term exposure can cause damage to the liver and kidneys.

3. Stability[20] Stable

4. Prohibited use Substances[21] Strong oxidants, strong bases

5. Conditions to avoid contact[ 22] Heating

6. Polymerization hazard[23] No polymerization

7. Decomposition products[24] Hydrogen chloride

Storage method

Storage Precautions[25] Store in a cool, ventilated warehouse. Keep away from fire and heat sources. The storage temperature should not exceed 29°C. Keep container tightly sealed. They should be stored separately from oxidants and alkalis, and avoid mixed storage. Use explosion-proof lighting and ventilation facilities. It is prohibited to use mechanical equipment and tools that are prone to sparks. The storage area should be equipped with emergency release equipment and suitable containment materials.

Synthesis method

Obtained from the reaction of propylene and anhydrous hydrogen chloride. Mix dry hydrogen chloride and propylene at a molar ratio of 1:1.2, pass them into a reactor equipped with an activated clay catalyst, react at 120-140°C, and condense the product to obtain 2-chloropropane. The yield is 65%. It can also be obtained by the reaction of isopropyl alcohol and hydrogen chloride in the presence of zinc chloride.

?Preparation method?
?1. Isopropyl alcohol chlorination method

?2. Addition method of propylene and hydrogen chloride

Purpose

1. Organic synthetic raw materials, used to make the pesticide piclochlor and also used as solvents. Used as a solvent for fats and oils and as a special solvent for organic synthesis. It is also used as a raw material for the manufacture of surgical anesthetics and thymol.

2. Used as a solvent and used in the manufacture of isopropylamine. [26]

extended-reading:https://www.newtopchem.com/archives/1145
extended-reading:https://www.cyclohexylamine.net/delayed-amine-a-400-niax-catalyst-a-400/
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/129-2.jpg
extended-reading:https://www.bdmaee.net/catalyst-a-300/
extended-reading:https://www.bdmaee.net/nn-dimthylbenzylamine/
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/FASCAT4350-catalyst-FASCAT-4350.pdf
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/134-1.jpg
extended-reading:https://www.newtopchem.com/archives/595
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/-MB20-bismuth-metal-carboxylate-catalyst-catalyst–MB20.pdf
extended-reading:https://www.bdmaee.net/nt-cat-la-300-catalyst-cas10861-07-1-newtopchem/