DL-glyceraldehyde

DL-glyceraldehyde structural formula

Structural formula

Business number 017X
Molecular formula C3H6O3
Molecular weight 90.08
label

None

Numbering system

CAS number:56-82-6

MDL number:MFCD00064379

EINECS number:200-290-0

RTECS number:MA6475000

BRN number:635685

PubChem number:24895192

Physical property data

1. Properties: white crystal.

2. Density (g/mL, 25/4?): 1.445

3. Relative vapor density (g/mL, air=1): Undetermined

4. Melting point (ºC): 145

5. Boiling point (ºC, normal pressure): Undetermined

6. Boiling point (ºC, 5.2kPa): Undetermined

7. Refractive index: Undetermined

8. Flash point (ºC): Undetermined

9. Specific rotation (º): Undetermined

7. p>

10. Autoignition point or ignition temperature (ºC): Undetermined

11. Vapor pressure (kPa, 25ºC): Undetermined

12. Saturated vapor pressure (kPa, 60ºC): Undetermined

13. Heat of combustion (KJ/mol): Undetermined

14. Critical temperature (ºC): Undetermined

15. Critical pressure (KPa): Undetermined

16. Log value of oil-water (octanol/water) partition coefficient: Undetermined

17. Explosion upper limit (%, V /V): Undetermined

18. Lower explosion limit (%, V/V): Undetermined

19. Solubility: Slightly soluble in water, insoluble in benzene and petroleum ether and pentane.

Toxicological data

1. Acute toxicity: rat abdominal LD50: 2mg/kg 2. Mutagenicity: mutation microorganismsTEST system: bacteria – Salmonella typhimurium: 100ug/plate

Ecological data

None

Molecular structure data

5. Molecular property data:

1. Molar refractive index: 19.16

2. Molar volume (cm3/mol): 70.7

3. Isotonic specific volume (90.2K): 191.2

4. Surface tension (dyne/cm): 53.3

5. Polarizability (10-24cm3): 7.59

Compute chemical data

1. Reference value for calculation of hydrophobic parameters (XlogP): -1.6

2. Number of hydrogen bond donors: 2

3. Number of hydrogen bond acceptors: 3

p>

4. Number of rotatable chemical bonds: 2

5. Number of tautomers: 3

6. Topological molecule polar surface area 57.5

7. Number of heavy atoms: 6

8. Surface charge: 0

9. Complexity: 43.3

10. Number of isotope atoms: 0

11. Determine the number of atomic stereocenters: 0

12. Uncertain number of atomic stereocenters: 1

13. Determine ??Number of stereocenters of chemical bonds: 0

14. Number of stereocenters of uncertain chemical bonds: 0

15. Number of covalent bond units: 1

Properties and stability

None

Storage method

This product should be stored in a sealed, cool place and away from light.

Synthesis method

1. Mix 50g (0.3mol) diethanol acetal DL-glyceraldehyde and 500ml 0.1mol/L sulfuric acid, and place at 20°C for 7 days. After adding 30ml of glacial acetic acid, neutralize with barium hydroxide solution, add 5g of activated carbon, stir and filter. The water in the filtrate was evaporated under reduced pressure, and an equal volume of absolute ethanol was added to the residue. The crystals were filtered out and dried to obtain 22g DL-glyceraldehyde, with a yield of 80%.

2. Preparation method:

Dietol-?-chloroacetaldehyde (3): In a 3L reaction bottle equipped with a stirrer and ventilation tube, add 253 mL of absolute ethanol, cool it to below 0°C in an ice-salt bath, and dry it of hydrogen chloride gas to saturation. While stirring, 112g (2.0 mol) of acrolein (2) cooled to 0°C was added dropwise, the reaction temperature was controlled to 0°C, and the addition was completed in about 1.5 hours. Let stand and separate the layers, separate the lower organic layer, add solid sodium bicarbonate powder in batches, neutralize and remove acid. Filter, wash the filtrate with ice water, and dry over anhydrous potassium carbonate for 10 hours. After filtration, distill under reduced pressure and collect the fractions at 58-62°C/1.06kPa to obtain 112g of diethanol-?-chloroacetaldehyde (3) with a yield of 34%. Diethanol acrolein (4): Add 340g (6mol) of dry powdered potassium hydroxide and 167g (1.0mol) of the above compound (3) into a distillation bottle. After shaking vigorously, install a fractionation device. Heat the distillation bottle in an oil bath at 210 to 220°C until no more distillate is distilled. The water in the distillate was separated, and the organic layer was dried with potassium carbonate, filtered and distilled. The fractions at 122-126°C were collected to obtain 98g of diethanol acrolein (4), with a yield of 75%. Diethylglyceraldehyde (5): In a reaction bottle equipped with a stirrer, thermometer, and dropping funnel, add 65g (0.5mol) of diethylglyceraldehyde (4) and 600mL of water, cool to 5°C, and stir Add dropwise a solution of 80g (0.5mol) water, control the dropping speed to about 25mL/min, and keep the temperature of the reaction solution at about 5°C. Stirring – stop, the reactants will become gel-like. After leaving it for 2 hours, heat it in a steam bath for 1 hour. Filter with suction, and wash the manganese dioxide with 150 mL of water. Combine the filtrate and washing liquid, and add 1200g anhydrous potassium carbonate while cooling. The organic layer was separated, and the aqueous layer was extracted 4 times with diethyl ether. The organic layers were combined and dried over anhydrous potassium carbonate. After recovering the diethyl ether, distill under reduced pressure and collect the fraction at 120-121°C/1.06kPa to obtain 55g of diethyl glyceraldehyde (5) with a yield of 67%. DL-Glyceraldehyde (1): Place 50g (0.3mol) of the above-mentioned diethanol glyceraldehyde (5) and 0.05mol/L sulfuric acid in a reaction bottle, and place it at 20°C for 1 week. Add 30 mL of glacial acetic acid. The reaction compound was carefully neutralized with barium hydroxide solution and decolorized with activated carbon. Filter, and the filtrate is concentrated at a pressure of 1.33kPa. Add an equal volume of absolute ethanol to the remainder and slowly crystallize. Filter the precipitated crystals and vacuum dry them in a vacuum dryer containing soda lime and calcium chloride desiccant to obtain 22g of DL-glyceraldehyde (1) with a yield of 80%. [1]

Purpose

Used in biochemical research, organic synthesis intermediates, and nutritional agents.

extended-reading:https://www.newtopchem.com/archives/45168
extended-reading:https://www.morpholine.org/cas-616-47-7/
extended-reading:https://www.newtopchem.com/archives/45084
extended-reading:https://www.bdmaee.net/u-cat-sa-841-catalyst-cas12674-17-3-sanyo-japan/
extended-reading:https://www.bdmaee.net/9727-substitutes/
extended-reading:https://www.newtopchem.com/archives/category/products/page/83
extended-reading:https://www.bdmaee.net/bis3-dimethylaminopropyl-n-cas-33329-35-0-tris3-dimethylaminopropylamine/
extended-reading:https://www.cyclohexylamine.net/addocat-106-teda-l33b-dabco-polycat/
extended-reading:https://www.bdmaee.net/dioctyltin-dilaurate/
extended-reading:https://www.newtopchem.com/archives/category/products/page/85

formamide

Formamide structural formula

Structural formula

Business number 01J1
Molecular formula CH3NO
Molecular weight 45.04
label

Aminoformaldehyde,

Methanamide,

Carbamaldehyde,

Reagents for genetic engineering research,

paper treatment agent,

Softeners for the fiber industry,

Softener for animal glue,

Reaction solvents for organic synthesis

Numbering system

CAS number:75-12-7

MDL number:MFCD00007941

EINECS number:200-842-0

RTECS number:LQ0525000

BRN number:505995

PubChem number:24894985

Physical property data

1. Properties: Colorless and transparent viscous liquid with a slight ammonia smell and hygroscopicity.

2. Boiling point (ºC, 101.3kPa, partially decomposed): 220, 70.5ºC (133.3pa)

3. Melting point (ºC): 2.55~3

4. Relative density (g/mL, 20/4ºC): 1.13339

5. Relative density (g/mL, 25/4ºC): 1.134

6. Relative steam Density (g/mL, air=1): 1.55

7. Refractive index (20ºC): 1.447

8. Refractive index (25ºC): 1.44682

9. Viscosity (mPa·s, 20ºC): 3.764

10. Viscosity (mPa·s, 25ºC): 3.302

11. Flash point (ºC, closed): 175

12. Flash point (ºC, open): 150

13. Fire point (ºC): >500

14. Heat of vaporization (KJ/mol, 25ºC): 65.021

15. Heat of fusion (KJ/mol): 6.699

16. Heat of formation (KJ/mol, 25ºC, liquid): -254.1

17. Heat of combustion (KJ/mol, 25ºC, liquid): 568.6

18. Specific heat capacity (KJ/(kg·K), 25ºC, constant pressure): 2.39

19. Conductivity (S/m): <2×10-1

20. Solubility: Can be dissolved with water, alcohol, ethylene glycol, acetone, acetic acid, dihydrogen Miscible with alkane, glycerin, phenol, etc. But it is almost insoluble in aliphatic hydrocarbons, aromatic hydrocarbons, ethers, chlorinated hydrocarbons, chlorobenzene, nitrobenzene, etc.

Toxicological data

Formamide has an irritating effect on the skin and mucous membranes, can occasionally cause allergies, and can be absorbed by the skin. The oral lethal dose LD for rats is 7500 mg/kg. Rat oral LD50>4000mg/kg. Dermal toxicity in guinea pigs is LD50<5mL/kg and LD50 is 2539mg/kg.

Ecological data

None

Molecular structure data

1. Molar refractive index: 10.40

2. Molar volume (cm3/mol): 46.0

3. Isotonic specific volume (90.2K): 109.8

4. Surface tension (dyne/cm): 32.4

5. Polarizability (10-24cm3): 4.12 p>

Compute chemical data

1. Hydrophobic parameter calculation reference value (XlogP): -0.8

2. Number of hydrogen bond donors: 1

3. Number of hydrogen bond acceptors: 1

p>

4. Number of rotatable chemical bonds: 0

5. Number of tautomers: 2

6. Topological molecular polar surface area (TPSA): 43.1

7. Number of heavy atoms: 3

8. Surface charge: 0

9. Complexity: 12.3

10. Isotopic atoms Quantity: 0

11. Determine the number of atomic stereocenters: 0

12. Uncertain number of atomic stereocenters: 0

13. Determine the chemical bond structure Number of stereocenters: 0

14, Number of uncertain chemical bond stereocenters: 0

15, Number of covalent bond units: 1

Properties and stability

1. Chemical properties: The alkalinity of formamide is very weak, so the salt formed with strong acid is very unstable. Formamide is easily hydrolyzed to ammonium formate in aqueous solution. Ammonium formate is heated and dehydrated to form formamide again:

The hydrolysis rate of formamide is very slow at room temperature, but it is actually relatively stable. However, the hydrolysis rate is relatively fast at high temperatures, especially in the presence of acids and alkalis. There are two ways to pyrolyze formamide: it decomposes into ammonia and carbon monoxide when boiled under normal pressure:

When gaseous formamide is pyrolyzed at 400~600°C in the presence of a dehydrating agent, hydrogen cyanide is obtained , yield 90%:

The adduct formed by formamide and strong acid is very reactive and can undergo the following reactions:

Formamide reacts with alcohol in the presence of hydrogen chloride to form formate. . It reacts with hypochlorous acid in a cold water bath to form N,N-dichloroformamide HCONCl2. This compound is explosive when pure. It reacts with metal potassium and sodium to form a metal compound such as diformamide (HCO)2NH. Photochemical reactions with alkenes produce fatty acid amides. Reacts with alkyl halides at 150°C to form formamide compounds and formic esters:

Formamide reacts with metal salts to form substitutions or adducts:

Formamide reacts with pentoxide Dehydration under the action of diphosphorus produces hydrogen cyanide.

2.This product has low toxicity. Temporarily irritating to skin and mucous membranes. The oral LC50 of mice is greater than 1000mg/kg. Wear protective equipment for long-term exposure.

3. Exist in smoke.
?

Storage method

1. This product should be kept sealed, cool and dry. Keep sealed, avoid contact with water, and store in a cool and ventilated place.

2. Formamide products can be stored and transported in stainless steel or aluminum tanks (tank trucks) or tank-type containers as well as 60kg and 220kg drums. The container material can be polyethylene or polyethylene-lined steel. Keep sealed, avoid contact with water, and store in a cool and ventilated place.

Synthesis method

1. Two-step method: The first step is to generate methyl formate from carbon monoxide and methanol under the action of sodium methoxide. In the second step, methyl formate is ammonolyzed to form formamide, and the reaction conditions are 80-100°C and 0.2-0.6MPa. This method has fewer problems.

2. Formic acid method Formic acid and methanol First, esterification reaction is performed to generate methyl formate, and then ammonolysis is performed to generate formamide, and then distillation is performed to separate methanol and impurities to obtain the finished product. This method has become obsolete due to its high cost.

3. One-step method consists of carbon monoxide and Ammonia is catalyzed by sodium methoxide to directly synthesize formamide through high pressure (10-30MPa) and temperature of 80-100?

4. Formic acid and urea method.

5. The new method consists of sodium formate and Ammonium salt reacts under certain temperature and pressure to form formamide. This method is a domestic patent invention.

Refining method: Formamide is produced on a large scale from carbon monoxide and ammonia at 15~20MPa and 200?. It can also be obtained by heating ammonium formate or the reaction between formate and ammonia. Therefore, it often contains water, ammonia, methanol, formate and ammonium formate. The purity of formamide can be improved by using fractional distillation under reduced pressure or fractional crystallization. Formamide used for determination of physical constants can be refined by adding a few drops of bromothymol blue to formamide. Neutralize with sodium hydroxide, heat the neutralized solution at 80 to 90°C under reduced pressure, and then neutralize. Repeat the operation several times until the solution remains neutral during heating. Then add sodium formate and distill under reduced pressure at 80~90°C. The distillate is neutralized and then distilled, and the next 4/5 fractions are collected to obtain formamide with a melting point of 2.2°C.

6.Ammonium formate is heated and decomposed to obtain formamide, which is then refined through distillation:

Purpose

1. Formamide has active reactivity and special solubility. It can be used as a raw material for organic synthesis, paper treatment agent, softener in the fiber industry, softener for animal glue, and also used to determine the amino acid content in rice. Analytical reagents. In organic synthesis, it is mostly used in medicine, and it also has many uses in pesticides, dyes, pigments, spices, and auxiliaries. It is also an excellent organic solvent and is mainly used in the spinning of acrylonitrile copolymers and ion exchange resins, as well as in the anti-static coating or conductive coating of plastic products. In addition, it is also used to separate chlorosilanes, purify oils, etc. Formamide can undergo a variety of reactions. In addition to the participation of three hydrogens in the reaction, it can also undergo dehydration, removal of CO, introduction of amino groups, introduction of acyl groups and cyclization reactions. Take Ringhe as an example. Diethyl malonate is cyclized with formamide to obtain the intermediate 4,6-dihydroxypyrimidine of vitamin B4. Anthranilic acid is cyclized with an amide to obtain the antiarrhythmic croroline intermediate quinazolone-4. 3-Amino-4-ethoxycarbonylpyrazole is cyclized with carboxamide to obtain the xanthine oxidase inhibitor allopurinol . The anticancer drug ethyleneimine is obtained by cyclizing ethylenediaminetetraacetic acid with formamide. Methyl ethyl methoxymalonate is cyclized with formamide to obtain disodium 5-methoxy-4,6-dihydroxypyrimidine, an intermediate of sulfonamide drugs.

2. Since formamide can dissolve inorganic salts and proteins with high dielectric constants, it can be used in the electrolysis and electroplating industries, as well as as reaction solvents and refining solvents for organic synthesis. In addition, formamide is also used as a raw material for medicines, dyes, spices, etc., as a treatment agent for paper, as a softener in the fiber industry, and as a softener for animal glue.

3.Used as raw material for organic synthesis. Polar solvent for organic reactions. Liquid chromatography solvents and eluents.

extended-reading:https://www.newtopchem.com/archives/44995
extended-reading:https://www.newtopchem.com/archives/44393
extended-reading:https://www.cyclohexylamine.net/dabco-delay-type-catalyst-delay-type-strong-gel-catalyst/
extended-reading:https://www.newtopchem.com/archives/category/products/page/78
extended-reading:https://www.bdmaee.net/bismuth-neodecanoate/
extended-reading:https://www.newtopchem.com/archives/40279
extended-reading:https://www.newtopchem.com/archives/40561
extended-reading:https://www.bdmaee.net/wp-content/uploads/2021/05/4-1.jpg
extended-reading:https://www.newtopchem.com/archives/44540
extended-reading:https://www.bdmaee.net/pc-cat-ncm-catalyst/

acetylsamine

Acetylarsine Structural Formula

Structural formula

Business number 02C6
Molecular formula C8H10AsNO5
Molecular weight 275.09
label

acetapine,

3-acetamido-4-hydroxyphenylarsonic acid,

acetylsamine,

Acetaminophen Hydroxybenzoic Acid,

Acetamide arsine,

N-Acetyl-4-hydroxy-m-arsanilic acid,

[3-(Acetylamino)-4-hydroxyphenyl)]arsonic acid,

Acetphenarsine

Numbering system

CAS number:97-44-9

MDL number:MFCD00019936

EINECS number:202-582-3

RTECS number:CF8400000

BRN number:None

PubChem number:24890414

Physical property data

1. Properties: White prismatic crystals, odorless.

2. Density (g/mL, 20?): Undetermined

3. Relative vapor density (g/mL, air=1): Undetermined

4. Melting point (ºC): 240-250? (decomposition)

5. Boiling point (ºC, normal pressure): Undetermined

6. Boiling point (ºC, KPa) : Undetermined

7. Refractive index: Undetermined

8. Flash point (ºC): Undetermined

9. Specific rotation (º): Not determined

10. Autoignition point or ignition temperature (ºC): Not determined

11. Vapor pressure (mmHg, 20.2ºC): Not determined

12. Saturated vapor pressure (kPa, ºC): Undetermined

13. Heat of combustion (KJ/mol): Undetermined

14. Critical temperature (ºC): Undetermined

15. Critical pressure (KPa): Undetermined

16. Log value of oil-water (octanol/water) partition coefficient: Undetermined

17. Explosion Upper limit (%, V/V): Undetermined

18. Lower explosion limit (%, V/V): Undetermined

19. Solubility: Slightly soluble in cold water and ethanol and dilute acids, soluble in boiling water, caustic alkali solutions or carbonic acid alkali solutions.

Toxicological data

Rat oral LD50 is 4mg/kg

Ecological data

None

Molecular structure data

None

Compute chemical data

1. Reference value for hydrophobic parameter calculation (XlogP): None

2. Number of hydrogen bond donors: 4

3. Number of hydrogen bond acceptors: 5

4. Number of rotatable chemical bonds: 2

5. Number of tautomers: 10

6. Topological molecule polar surface area 107

7. Number of heavy atoms: 15

8. Surface charge: 0

9. Complexity: 289

10. Number of isotope atoms: 0

11. Determine the number of atomic stereocenters: 0

12. Uncertain.Number of ??stereocenters: 0

13. Determine the number of stereocenters of chemical bonds: 0

14. Uncertain number of stereocenters of chemical bonds: 0

15. Number of covalent bond units: 1

Properties and stability

1. Highly toxic.

Storage method

Stored sealed and protected from light.

Synthesis method

Originated from acetylation of 1.3-amino-4-hydroxyphenylarsonic acid. Add 3-amino-4-hydroxyphenylarsonic acid to 5% sodium hydroxide solution and stir until completely dissolved. Adjust pH to 8, heat to 30-35°C, add acetic anhydride under vigorous stirring to precipitate, continue stirring for 1 hour, add hydrochloric acid at 55-60°C to precipitate crystals, filter, and wash with water to obtain crude acetylsamine. Refining: Dissolve the crude product in 5% sodium hydroxide solution, add activated carbon, stir, filter, and slowly add 10% sulfuric acid to the filtrate to make the Congo red test paper turn blue and precipitate crystals. Filter and wash to obtain refined acetylsamine.

Purpose

1. Medicine. Disinfectant, has the effect of killing trichomoniasis, and is used to treat vaginal trichomoniasis. It is often made into Diweijing tablets, each tablet contains 0.25g of acetylsamine and 0.30g of boric acid.

extended-reading:https://www.bdmaee.net/cas23850-94-4/
extended-reading:https://www.newtopchem.com/archives/44031
extended-reading:https://www.bdmaee.net/nn-dicyclohexylmethylamine/
extended-reading:https://www.newtopchem.com/archives/39847
extended-reading:https://www.bdmaee.net/niax-a-33-catalyst-momentive/
extended-reading:https://www.cyclohexylamine.net/pc-cat-np109-low-odor-tertiary-amine-catalyst-polycat-9/
extended-reading:https://www.newtopchem.com/archives/45117
extended-reading:https://www.morpholine.org/delayed-catalyst-for-foaming-dabco-dc2-polyurethane-catalyst-dabco-dc2/
extended-reading:https://www.newtopchem.com/archives/44515
extended-reading:https://www.cyclohexylamine.net/high-quality-cas-136-53-8-zinc-octoate-ethylhexanoic-acid-zinc-salt/