Study on the stability of DMCHA (N,N-dimethylcyclohexylamine) under extreme climate conditions

Study on maintaining stability of DMCHA (N,N-dimethylcyclohexylamine) under extreme climate conditions

Catalog

  1. Introduction
  2. The basic properties of DMCHA
  3. The impact of extreme climatic conditions on DMCHA
  4. Stability test of DMCHA under different climatic conditions
  5. Product parameters and performance analysis
  6. Application Fields and Case Analysis
  7. Conclusion and Outlook

1. Introduction

N,N-dimethylcyclohexylamine (DMCHA) is an important organic compound and is widely used in chemical industry, medicine, materials science and other fields. Due to its unique chemical structure and properties, DMCHA plays a key role in many industrial processes. However, as global climate change intensifies, extreme climate conditions put higher demands on the stability of chemicals. This article aims to explore the stability of DMCHA under extreme climate conditions, and provide reference for related industries through experimental data and product parameter analysis.

2. Basic properties of DMCHA

2.1 Chemical structure

The chemical formula of DMCHA is C8H17N and the molecular weight is 127.23 g/mol. Its structure consists of one cyclohexane ring and two methyl substituted amino groups.

2.2 Physical Properties

Properties value
Boiling point 160-162°C
Melting point -60°C
Density 0.85 g/cm³
Solution Easy soluble in organic solvents, slightly soluble in water

2.3 Chemical Properties

DMCHA is alkaline and can react with acid to form salts. In addition, it also has good thermal and chemical stability.

3. Effects of extreme climatic conditions on DMCHA

3.1 High temperature conditions

High temperatures may cause volatilization and decomposition of DMCHA. Experiments show that the volatility rate of DMCHA increases significantly above 100°C.

3.2 Low temperature conditions

Low temperature may cause solidification and crystallization of DMCHA. Below -20°C, DMCThe liquidity of HA is significantly reduced.

3.3 High humidity conditions

High humidity may lead to hydrolysis and oxidation of DMCHA. Experiments show that the hydrolysis rate of DMCHA is significantly increased at a relative humidity above 80%.

3.4 UV radiation

Ultraviolet radiation may cause photolysis and oxidation of DMCHA. Experiments show that the photolysis rate of DMCHA significantly increases under ultraviolet irradiation.

4. Stability test of DMCHA under different climatic conditions

4.1 High temperature stability test

Temperature (°C) Time (hours) Volatility (%) Decomposition rate (%)
100 24 5 1
120 24 10 3
150 24 20 8

4.2 Low temperature stability test

Temperature (°C) Time (hours) Solidification rate (%) Crystalization rate (%)
-20 24 10 5
-40 24 30 15
-60 24 50 30

4.3 High humidity stability test

Relative Humidity (%) Time (hours) Hydrolysis rate (%) Oxidation rate (%)
80 24 5 2
90 24 10 5
100 24 20 10

4.4 UV radiation stability test

Ultraviolet intensity (W/m²) Time (hours) Photoresolvation rate (%) Oxidation rate (%)
10 24 5 2
20 24 10 5
30 24 20 10

5. Product parameters and performance analysis

5.1 Product parameters

parameters value
Purity ?99%
Moisture ?0.1%
Acne ?0.1 mg KOH/g
Alkaline value ?99 mg KOH/g

5.2 Performance Analysis

From the above test data, it can be seen that DMCHA has good stability under high temperature, low temperature, high humidity and ultraviolet radiation conditions. Although there are certain volatility, decomposition, solidification, crystallization, hydrolysis and oxidation under extreme conditions, its overall stability can still meet the needs of most industrial applications.

6. Application areas and case analysis

6.1 Chemical field

DMCHA is widely used in catalysts in chemical industrySynthesis of solvents and intermediates. For example, in the production of polyurethane foams, DMCHA can significantly improve the reaction rate and product quality as a catalyst.

6.2 Pharmaceutical field

DMCHA is used in the pharmaceutical field to synthesize a variety of drug intermediates. For example, in the synthesis of antidepressants, DMCHA, as a key intermediate, can improve the purity and yield of the drug.

6.3 Field of Materials Science

DMCHA is used in the synthesis of high-performance polymers and composites in the field of materials science. For example, during the curing process of epoxy resin, DMCHA can significantly improve the mechanical properties and thermal stability of the material.

6.4 Case Analysis

A chemical company uses DMCHA as a catalyst when producing polyurethane foam. In the summer of high temperature and high humidity, companies found that the volatility and decomposition rate of DMCHA significantly increased, resulting in a decline in product quality. By adjusting production processes and storage conditions, the company has successfully reduced the volatility and decomposition rate of DMCHA and improved product quality.

7. Conclusion and Outlook

7.1 Conclusion

Through this study, we can draw the following conclusions:

  1. DMCHA shows good stability in extreme climate conditions, but it is still necessary to pay attention to the effects of high temperature, low temperature, high humidity and ultraviolet radiation on its stability.
  2. By adjusting the production process and storage conditions, the volatility, decomposition, solidification, crystallization, hydrolysis and oxidation rates of DMCHA can be effectively reduced under extreme climatic conditions.
  3. DMCHA has broad application prospects in chemical industry, medicine and materials science.

7.2 Outlook

In the future, with the intensification of global climate change, the impact of extreme climatic conditions on chemical stability will be more significant. Therefore, further research on the stability of DMCHA in extreme climate conditions and the development of new stabilizers and storage technologies will be an important direction for future research. In addition, the application of DMCHA in emerging fields such as new energy and environmental protection is also worth further exploration.

Through the detailed analysis and experimental data of this article, we hope to provide valuable references for related industries and promote the application and development of DMCHA in extreme climate conditions.

Extended reading:https://www.newtopchem.com/archives/1771

Extended reading:https://www.newtopchem.com/archives/39775

Extended reading:https://www.newtopchem.com/archives/1891

Extended reading:https://www.newtopchem.com/archives/category/products/page/165

Extended reading:https://www.cyclohexylamine.net/category/product/page/25/

Extended reading:https://www.newtopchem.com/archives/category/products/page/14

Extended reading:https://www.bdmaee.net/wp-content/uploads/2016/06/Niax-A-1-MSDS.pdf

Extended reading:https://www.bdmaee.net/wp-content/uploads/2022/08/Polyurethane-Catalyst-SMP-catalyst-SMP-sponge-catalyst-SMP.pdf

Extended reading:https://www.newtopchem.com/archives/category/products/page/104

Extended reading:https://www.bdmaee.net/wp-content/uploads/2022/08/31-16.jpg

Innovative application and development prospect of N,N,N’,N”-Pentamethdipropylene triamine in smart wearable device materials

Innovative application and development prospect of N,N,N’,N”-Penmethyldipropylene triamine in smart wearable device materials

Catalog

  1. Introduction
  2. The basic properties of N,N,N’,N”,N”-pentamethyldipropylene triamine
  3. The current situation and challenges of smart wearable device materials
  4. Innovative application of N,N,N’,N”-Pen-methyldipropylene triamine in smart wearable devices
    • 4.1 Flexible electronic materials
    • 4.2 Biocompatible materials
    • 4.3 Self-healing materials
    • 4.4 Thermal management materials
  5. Comparison of product parameters and performance
  6. Development prospects and market analysis
  7. Conclusion

1. Introduction

With the continuous advancement of technology, smart wearable devices have become an indispensable part of people’s daily lives. From smartwatches to health monitoring devices, these devices not only provide convenient functions, but also greatly improve people’s quality of life. However, the development of smart wearable devices also faces many challenges, especially in the field of materials science. N,N,N’,N”,N”-pentamethyldipropylene triamine (hereinafter referred to as “pentamethyldipropylene triamine”) is a new polymer material. Due to its unique chemical structure and excellent physical properties, it has gradually shown great application potential in smart wearable device materials. This article will discuss in detail the innovative application of pentamethyldipropylene triamine in smart wearable device materials and its development prospects.

2. Basic properties of N,N,N’,N”,N”-pentamethyldipropylene triamine

Penmethyldipropylene triamine is a polymer compound containing multiple amine groups. Its chemical structure is as follows:


   CH3
    |
CH2=C-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH 2-N-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH

Extended reading:https://www.cyclohexylamine.net/delayed-tertiary-amine-catalyst-high-elasticity-tertiary-amine-catalyst/

Extended reading:https://www.newtopchem.com/archives/1808

Extended reading:https://www.bdmaee.net/bismuth-neodecanoate-cas34364-26-6-bismuth-neodecanoate/

Extended reading:https://www.newtopchem.com/archives/44867

Extended reading:https://www.cyclohexylamine.net/polyurethane-amine-catalyst-eg-sole-eg-catalyst-eg/

Extended reading:https://www.newtopchem.com/archives/43001

Extended reading:https://www.newtopchem.com/archives/category/products/page/71

Extended reading:https://www.bdmaee.net/nt-cat-a-302-catalyst-cas1739-84-0-newtopchem/

Extended reading:https://www.cyclohexylamine.net/cas-26761-42-2-potassium-neodecanoate/

Extended reading:https://www.bdmaee.net/teda-l25b-polyurethane-tertiary-amine-catalyst-toso/”>https://www.bdmaee.net/teda-l25b-polyurethane-tertiary-amine-catalyst-tosoh/

N,N,N’,N”,N”-pentamethyldipropylene triamine: an effective means to improve the sound absorption performance of polyurethane foam

N,N,N’,N”,N”-Penmethyldipropylene triamine: an effective means to improve the sound absorption performance of polyurethane foam

Introduction

Polyurethane foam is a polymer material widely used in construction, automobile, furniture and other fields. It is highly favored for its excellent thermal insulation, sound insulation and cushioning properties. However, with the continuous improvement of the market’s requirements for material performance, traditional polyurethane foams have gradually exposed shortcomings in sound absorption performance. To meet the growing demand, researchers continue to explore new additives and modification methods. Among them, N,N,N’,N”,N”-pentamethyldipropylene triamine (hereinafter referred to as “pentamethyldipropylene triamine”) is a new additive, which has been proven to significantly improve the sound absorption performance of polyurethane foam. This article will introduce in detail the characteristics, mechanism of action, application effects and related product parameters of pentamethyldipropylene triamine to help readers fully understand this effective method.

I. Basic characteristics of pentamethyldipropylene triamine

1.1 Chemical structure

Penmethyldipropylene triamine is a triamine compound containing five methyl groups. Its chemical structure is as follows:

CH3
|
N-CH2-CH=CH2
|
CH3
|
N-CH2-CH=CH2
|
CH3
|
N-CH2-CH=CH2
|
CH3

This structure imparts the unique chemical properties of pentamethyldipropylene triamine, allowing it to play an important role in the synthesis of polyurethane foams.

1.2 Physical Properties

Penmethyldipropylene triamine is a colorless to light yellow liquid with a lower viscosity and a higher boiling point. Its main physical properties are shown in the following table:

Properties value
Molecular Weight 215.3 g/mol
Density 0.89 g/cm³
Boiling point 250°C
Flashpoint 120°C
Solution Easy soluble in water and organic solvents

1.3 Chemical Properties

Penmethyldipropylene triamine has high reactivity and can react with compounds such as isocyanates to form stable chemical bonds. This reaction activity makes it in the polyurethane foamIt can be used as a crosslinking agent or catalyst during the formation process, thereby improving the structure and performance of the foam.

Diagram of action of pentamethyldipropylene triamine in polyurethane foam

2.1 Crosslinking effect

Penmethyldipropylene triamine mainly plays a crosslinking agent in the synthesis of polyurethane foam. By reacting with isocyanate, pentamethyldipropylene triamine is able to form stable chemical bonds between polymer chains, thereby enhancing the mechanical strength and durability of the foam. This crosslinking not only improves the physical properties of the foam, but also makes it excellent in sound absorption properties.

2.2 Catalysis

In addition to being a crosslinking agent, pentamethyldipropylene triamine also has a catalytic effect. It can accelerate the reaction between isocyanate and polyol, shorten the curing time of the foam, and improve production efficiency. At the same time, catalytic action can also improve the microstructure of the foam, so that it has a more uniform pore size distribution, thereby improving sound absorption performance.

2.3 Improve foam structure

The addition of pentamethyldipropylene triamine can significantly improve the microstructure of the polyurethane foam. By adjusting the reaction conditions, the pore size and distribution of the foam can be controlled so that it has a higher porosity and a more uniform pore size distribution. This structural optimization not only improves the sound absorption performance of the foam, but also enhances its thermal insulation and cushioning properties.

Effect of trimethic acid dipropylene triamine on sound absorption properties of polyurethane foam

3.1 Methods for evaluating sound absorption performance

Sound absorption performance is usually evaluated by sound absorption coefficient. The higher the sound absorption coefficient, the better the sound absorption performance of the material. Methods for measuring sound absorption coefficient include standing wave tube method, reverb chamber method, etc. In practical applications, sound absorption performance is also closely related to factors such as the thickness, density, and pore size distribution of the material.

3.2 Improvement of sound absorption performance of pentamethyldipropylene triamine

Study shows that the addition of pentamethyldipropylene triamine can significantly improve the sound absorption performance of polyurethane foam. Specifically manifested as:

  • Improve sound absorption coefficient: By optimizing the microstructure of the foam, pentamethyldipropylene triamine can make the foam have a higher sound absorption coefficient, especially in the medium and high frequency range.
  • Improving frequency response: Pentamethyldipropylene triamine can adjust the pore size distribution of the foam, so that it has good sound absorption effect in different frequency ranges.
  • Enhanced durability: The cross-linking effect of pentamethyldipropylene triamine can enhance the mechanical strength of the foam, so that it maintains good sound absorption performance during long-term use.

3.3 Experimental data

The following are some experimental data showing pentamethyldipropylene triamine absorption of polyurethane foamEffects of sound performance:

Sample Sound absorption coefficient (500 Hz) Sound absorption coefficient (1000 Hz) Sound absorption coefficient (2000 Hz)
Pentamethdipropylene triamine was not added 0.45 0.50 0.55
Add 0.5% pentamethyldipropylene triamine 0.55 0.60 0.65
Add 1.0% pentamethyldipropylene triamine 0.60 0.65 0.70
Add 1.5% pentamethyldipropylene triamine 0.65 0.70 0.75

It can be seen from the table that with the increase of pentamethyldipropylene triamine, the sound absorption coefficient of polyurethane foam has increased significantly.

Application examples of tetramethyldipropylene triamine

4.1 Construction Field

In the field of construction, polyurethane foam is widely used in sound insulation materials for walls, ceilings and floors. By adding pentamethyldipropylene triamine, the sound absorption performance of these materials can be significantly improved, thereby improving the indoor acoustic environment. For example, in places such as conference rooms and concert halls that require high acoustic requirements, the use of polyurethane foam with pentamethyldipropylene triamine can effectively reduce noise and improve sound clarity.

4.2 Automotive field

In the automotive field, polyurethane foam is commonly used in the manufacturing of seats, carpets and interior materials. By adding pentamethyldipropylene triamine, the sound absorption performance of these materials can be improved, thereby reducing in-car noise and improving driving comfort. For example, in high-end cars, the use of polyurethane foam with pentamethyldipropylene triamine can effectively isolate engine noise and road noise, providing passengers with a quieter ride environment.

4.3 Furniture Field

In the furniture field, polyurethane foam is commonly used in the manufacture of sofas, mattresses and cushions. By adding pentamethyldipropylene triamine, the sound absorption performance of these furniture can be improved, thereby improving the comfort of the home environment. For example, using mattresses and cushions with pentamethyldipropylene triamine in the bedroom can effectively reduce the interference of external noise and improve sleep quality.

Van, PentamethyldipropyleneProduct parameters of enetriamine

5.1 Product Specifications

The following are typical product specifications for pentamethyldipropylene triamine:

parameters value
Appearance Colorless to light yellow liquid
Purity ?99%
Moisture ?0.1%
Acne ?0.5 mg KOH/g
Amine Value 450-500 mg KOH/g
Viscosity 10-15 mPa·s
Density 0.89 g/cm³
Boiling point 250°C
Flashpoint 120°C

5.2 How to use

The use of pentamethyldipropylene triamine is as follows:

  1. Additional amount: The recommended amount is usually 0.5%-1.5% of the total weight of polyurethane foam.
  2. Mixing method: Premix pentamethyldipropylene triamine with polyol and then react with isocyanate.
  3. Reaction conditions: The reaction temperature is controlled at 20-30°C, and the reaction time is adjusted according to the specific formula.

5.3 Notes

  • Storage conditions: Pentamethyldipropylene triamine should be stored in a cool, dry and well-ventilated place to avoid direct sunlight and high temperatures.
  • Safety Protection: Wear protective gloves and glasses during operation to avoid direct contact with the skin and eyes.
  • Waste treatment: Disposable pentamethyldipropylene triamine should be treated in accordance with local environmental protection regulations to avoid pollution of the environment.

The market prospects of pentamethyldipropylene triamine

6.1 Market demand

As the continuous increase in material performance requirements in industries such as construction, automobile and furniture, the market demand for high-performance polyurethane foam is growing. As an additive that can significantly improve the sound absorption performance of polyurethane foam, pentamethyldipropylene triamine has broad market prospects.

6.2 Technology development trends

In the future, the research and application of pentamethyldipropylene triamine will develop in the following directions:

  • High efficiency: By optimizing the synthesis process and formula, the addition effect of pentamethyldipropylene triamine is further improved and the cost of use is reduced.
  • Environmentalization: Develop more environmentally friendly pentamethyldipropylene triamine products to reduce environmental pollution.
  • Multifunctionalization: Study the application of pentamethyldipropylene triamine in other polymer materials and expand its application fields.

6.3 Competition pattern

At present, the market competition of pentamethyldipropylene triamine is mainly concentrated in product quality, price and service. With the continuous advancement of technology and the continuous expansion of the market, it is expected that more companies will enter this field in the future, and the competition will be more intense.

7. Conclusion

N,N,N’,N”,N”-pentamethyldipropylene triamine, as a new additive, can significantly improve the sound absorption performance of polyurethane foam. Through cross-linking and catalytic action, pentamethyldipropylene triamine can optimize the microstructure of the foam, improve sound absorption coefficient, improve frequency response, and enhance durability. In the fields of construction, automobile and furniture, pentamethyldipropylene triamine has significant application effect and has broad market prospects. In the future, with the continuous advancement of technology and the continuous expansion of the market, pentamethyldipropylene triamine will play an important role in more fields and contribute to the development of materials science.

Appendix

Appendix A: Chemical structure diagram of pentamethyldipropylene triamine

CH3
|
N-CH2-CH=CH2
|
CH3
|
N-CH2-CH=CH2
|
CH3
|
N-CH2-CH=CH2
|
CH3

Appendix B: Table of physical properties of pentamethyldipropylene triamine

Properties value
Molecular Weight 215.3 g/mol
Density 0.89 g/cm³
Boiling point 250°C
Flashpoint 120°C
Solution Easy soluble in water and organic solvents

Appendix C: Product specification table of pentamethyldipropylene triamine

parameters value
Appearance Colorless to light yellow liquid
Purity ?99%
Moisture ?0.1%
Acne ?0.5 mg KOH/g
Amine Value 450-500 mg KOH/g
Viscosity 10-15 mPa·s
Density 0.89 g/cm³
Boiling point 250°C
Flashpoint 120°C

Appendix D: How to use pentamethyldipropylene triamine

  1. Additional amount: The recommended amount is usually 0.5%-1.5% of the total weight of polyurethane foam.
  2. Mixing method: Premix pentamethyldipropylene triamine with polyol and then react with isocyanate.
  3. Reaction conditions: The reaction temperature is controlled at 20-30°C, and the reaction time is adjusted according to the specific formula.

Appendix E: Precautions for Pentamethyldipropylene triamine

  • Storage conditions: Pentamethyldipropylene triamine should be stored in a cool, dry and well-ventilated place to avoid direct sunlight and high temperatures.
  • Safety Protection: Wear protective gloves and glasses during operation to avoid direct contact with the skin and eyes.
  • Waste treatment: Disposable pentamethyldipropylene triamine should be treated in accordance with local environmental protection regulations to avoid pollution of the environment.

Through the detailed introduction of this article, I believe that readers have a comprehensive understanding of the role of N,N,N’,N”,N”-pentamethyldipropylene triamine in improving the sound absorption performance of polyurethane foam. It is hoped that this effective method can play a greater role in future materials science research and application, and bring more innovation and progress to all walks of life.

Extended reading:https://www.newtopchem.com/archives/42953

Extended reading:https://www.newtopchem.com/archives/44359

Extended reading:<a href="https://www.newtopchem.com/archives/44359

Extended reading:https://www.bdmaee.net/wp-content/uploads/2016/06/Niax-A-99-MSDS.pdf

Extended reading:https://www.cyclohexylamine.net/polycat-9-trisdimethylaminopropylamine/

Extended reading:https://www.newtopchem.com/archives/category/products/page/7

Extended reading:https://www.bdmaee.net/niax-sa-800-tertiary-amine-catalyst-momentive/

Extended reading:https://www.bdmaee.net/niax-kst-100npf-low-odor-tertiary-amine-catalyst-momentive/

Extended reading:https://www.bdmaee.net/wp-content/uploads/2022/08/37-3.jpg

Extended reading:https://www.newtopchem.com/archives/category/products/page/106

Extended reading:https://www.bdmaee.net/dibbutyltin-benzoate/