Polyurethane foaming catalyst LED-103: Material selection for better ride experience for public transportation facilities

Polyurethane foaming catalyst LED-103: Material selection for better ride experience for public transportation facilities

Introduction

As the urbanization process accelerates, the demand for public transportation facilities is increasing. Whether it is a subway, bus or high-speed rail, passengers’ requirements for riding experience are getting higher and higher. Comfort, safety and environmental protection have become key factors in the design and material selection of public transportation facilities. As a new material, the polyurethane foaming catalyst LED-103 is becoming an ideal choice in public transportation facilities with its excellent performance and wide application prospects. This article will introduce in detail the characteristics, application scenarios, product parameters and their important role in improving the ride experience of public transportation facilities.

1. Overview of the polyurethane foaming catalyst LED-103

1.1 What is polyurethane foaming catalyst LED-103?

Polyurethane foaming catalyst LED-103 is a highly efficient and environmentally friendly catalyst, mainly used in the foaming process of polyurethane foam materials. It can significantly improve foaming efficiency and improve the physical properties of foam such as elasticity, durability and thermal insulation. The LED-103 is unique in that it can function at lower temperatures, reducing energy consumption while ensuring uniformity and stability of foam materials.

1.2 Main features of LED-103

  • High-efficiency Catalysis: LED-103 can complete the foaming process in a short time and improve production efficiency.
  • Environmental Performance: It does not contain heavy metals and harmful substances, and meets environmental protection standards.
  • Temperature adaptability: Maintain a stable catalytic effect over a wide temperature range.
  • Foot Quality: The resulting foam has uniform cellular structure, excellent elasticity and durability.

2. Application of LED-103 in public transportation facilities

2.1 Seat Materials

The seats in public transportation facilities are the part of the passenger’s direct contact, and their comfort and durability directly affect the riding experience. The polyurethane foam catalyzed by LED-103 has excellent elasticity and support, which can effectively alleviate the fatigue caused by long-term rides. In addition, its durability also ensures that the seat is not prone to deformation or damage during long-term use.

2.1.1 Comparison of seat material parameters

parameters Traditional foam material LED-103 Foam
Elastic recovery rate (%) 85 95
Durability (times) 50,000 100,000
Thermal Insulation Performance (W/mK) 0.035 0.025
Environmental General Excellent

2.2 Sound insulation material

Noise problems in public transportation facilities have always been an important factor affecting passenger comfort. The polyurethane foam catalyzed by LED-103 has excellent sound insulation performance, which can effectively absorb and block noise and improve the quietness in the car.

2.2.1 Comparison of sound insulation material parameters

parameters Traditional sound insulation materials LED-103 sound insulation material
Sound Insulation Effect (dB) 25 35
Weight (kg/m³) 50 40
Installation convenience General Excellent
Environmental General Excellent

2.3 Insulation material

In extreme weather conditions, temperature control inside public transportation facilities is crucial. The polyurethane foam catalyzed by LED-103 has excellent thermal insulation performance, which can effectively maintain the temperature in the car and reduce energy consumption.

2.3.1 Comparison of thermal insulation material parameters

parameters Traditional insulation LED-103 Insulation Material
Thermal conductivity (W/mK) 0.040 0.025
Weight (kg/m³) 60 45
Durability (years) 10 15
Environmental General Excellent

III. Product parameters of LED-103

3.1 Physical parameters

parameters value
Appearance Colorless transparent liquid
Density (g/cm³) 1.05
Viscosity (mPa·s) 150
Flash point (?) 120
Storage temperature (?) 5-30

3.2 Chemical Parameters

parameters value
pH value 7.0-8.0
Water-soluble Full dissolve
Stability Excellent
Environmental No harmful substances

3.3 Application parameters

parameters value
Catalytic Efficiency (%) 95
Foaming time (s) 30-60
Applicable temperature (?) 20-50
Foam density (kg/m³) 30-50

IV. Advantages and challenges of LED-103

4.1 Advantages

  • Efficient production: LED-103 can significantly shorten foaming time and improve production efficiency.
  • Environmental Performance: It does not contain heavy metals and harmful substances, and meets modern environmental protection requirements.
  • Veriodic: Suitable for a variety of polyurethane foam materials to meet different application needs.
  • Cost-effective: Although the initial cost is high, long-term use can save energy and maintenance costs.

4.2 Challenge

  • Technical threshold: The application of LED-103 requires certain technical support, and has high requirements for production equipment and technicians.
  • Market Cognition: As a new material, the market awareness of LED-103 still needs to be improved and more promotion and publicity is needed.

5. Future Outlook

With the increase in environmental awareness and the continuous advancement of technology, LED-103 has broad prospects for its application in public transportation facilities. In the future, as more research and development progresses, the performance of LED-103 will be further improved and the application scope will be wider. We look forward to the LED-103 that will bring more innovation and improvements to public transportation facilities and provide passengers with a more comfortable, safe and environmentally friendly ride experience.

Conclusion

Polyurethane foaming catalyst LED-103 is becoming the leader in the selection of materials for public transportation facilities due to its efficient, environmentally friendly and multifunctional characteristics. Whether it is seat materials, sound insulation materials or thermal insulation materials, LED-103 can significantly improve the performance and quality of the product, providing passengers with a better riding experience. Although it faces some technological and market challenges, with the continuous advancement of technology and the improvement of market awareness, the application prospects of LED-103 will be broader. We believe that LED-103 will play an increasingly important role in future public transportation facilities and contribute to the sustainable development of urban transportation.

Extended reading:https://www.newtopchem.com/archives/1139

Extended reading:https://www.newtopchem.com/archives/40573

Extended reading:https://www.newtopchem.com/archives/44087

Extended reading:https://www.newtopchem.com/archives/45523

Extended reading:https://www.newtopchem.com/archives/45205

Extended reading:https://www.newtopchem.com/archives/615

Extended reading:https://www.newtopchem.com/archives/39820

Extended reading:https://www.bdmaee.net/nt-cat-la-505-catalyst-cas10144-28-9-newtopchem/

Extended reading:https://www.bdmaee.net/u-cat-5050-catalyst-cas135083-57-8-sanyo-japan/

Extended reading:https://www.newtopchem.com/archives/1785

N,N,N’,N”,N”-pentamethyldipropylene triamine: a revolutionary application in high-performance polyurethane elastomers

N,N,N’,N”,N”-Penmethyldipropylene triamine: a revolutionary application in high-performance polyurethane elastomers

Introduction

Polyurethane Elastomers (PU Elastomers) are a polymer material with excellent mechanical properties, wear resistance, chemical resistance and elasticity. They are widely used in automobiles, construction, electronics, medical and other fields. In recent years, with the rapid development of materials science, the demand for high-performance polyurethane elastomers has increased. N,N,N’,N”,N”-pentamethyldipropylene triamine (hereinafter referred to as pentamethyldipropylene triamine) has shown revolutionary application potential in the preparation of high-performance polyurethane elastomers. This article will introduce in detail the chemical characteristics, mechanism of action, product parameters and its application in high-performance polyurethane elastomers.

1. Chemical properties of pentamethyldipropylene triamine

1.1 Chemical structure

The chemical formula of pentamethyldipropylene triamine is C11H23N3 and the molecular weight is 197.32 g/mol. Its molecular structure contains three nitrogen atoms and two propylene groups, which have high reactivity and cross-linking capabilities. The following is a schematic diagram of its chemical structure:

 CH3
        |
CH2=CH-CH2-N-CH2-CH2-N-CH2-CH2-CH3
        | | |
       CH3 CH3 CH3

1.2 Physical Properties

Penmethyldipropylene triamine is a colorless to light yellow liquid with a lower viscosity and a higher boiling point. Its main physical properties are shown in the following table:

Properties value
Appearance Colorless to light yellow liquid
Density (20°C) 0.89 g/cm³
Boiling point (1 atm) 250°C
Flashpoint 110°C
Viscosity (25°C) 10 mPa·s
Solution Easy soluble in organic solvents

1.3 Chemical Properties

Penmethyldipropylene triamine has high reactivity and can react rapidly with isocyanate to form a stable crosslinking structure. In addition, nitrogen atoms in its molecules can be used as catalysts to accelerate the polymerization of polyurethane.

Diamond and pentamethyldipropylene triamine

2.1 Crosslinking effect

Penmethyldipropylene triamine is mainly used as a crosslinking agent in the preparation of polyurethane elastomers. The acrylic groups in its molecules can react with isocyanate to form a three-dimensional network structure, thereby improving the mechanical properties and heat resistance of the material.

2.2 Catalysis

The nitrogen atoms in pentamethyldipropylene triamine have lone pairs of electrons and can form coordination bonds with carbon atoms in isocyanate, thereby accelerating the reaction of isocyanate with polyols. This catalytic action not only improves the reaction rate, but also improves the uniformity and stability of the material.

2.3 Enhancement

The introduction of pentamethyldipropylene triamine can significantly improve the tensile strength, tear strength and wear resistance of polyurethane elastomers. The rigid part of its molecular structure can effectively enhance the mechanical properties of the material.

Product parameters of trimethoxydipropylene triamine

3.1 Product Specifications

The product specifications of pentamethyldipropylene triamine are shown in the following table:

parameters value
Purity ?99%
Moisture content ?0.1%
Acne ?0.5 mg KOH/g
Amine Value 500-550 mg KOH/g
Storage temperature 0-30°C
Shelf life 12 months

3.2 How to use

The use of pentamethyldipropylene triamine is as follows:

  1. Combination: Usually mixed with polyols and isocyanate in a certain proportion, and the specific proportion is adjusted according to the material performance requirements.
  2. Mix: Use pentamethdipropyleneThe triamine and polyol were mixed thoroughly, and then the isocyanate was added and stirred evenly.
  3. Curring: Curing at room temperature or heating conditions, the curing time is adjusted according to the material thickness and ambient temperature.

3.3 Safety precautions

Penmethyldipropylene triamine has certain irritation. The following things should be paid attention to when using:

  • Avoid direct contact with the skin and eyes, and wear protective gloves and goggles during operation.
  • Operate in a well-ventilated environment to avoid inhaling steam.
  • Storage in a cool, dry place, away from fire and heat sources.

Application of tetramethyldipropylene triamine in high-performance polyurethane elastomers

4.1 Automobile Industry

In the automotive industry, high-performance polyurethane elastomers are widely used in seals, shock absorbers, tires and other components. The introduction of pentamethyldipropylene triamine can significantly improve the wear resistance, heat resistance and mechanical strength of these components, thereby extending their service life.

4.1.1 Seals

Pentamethyldipropylene triamine, as a crosslinking agent, can improve the elasticity and oil resistance of the seal, so that it maintains good sealing performance under high temperature and high pressure environments.

4.1.2 Shock Absorber

In the preparation of shock absorbers, pentamethyldipropylene triamine can enhance the damping performance of the material, improve the shock absorption effect, and extend the service life of the shock absorbers.

4.2 Construction Industry

In the construction industry, high-performance polyurethane elastomers are mainly used in waterproof materials, sealants and thermal insulation materials. The introduction of pentamethyldipropylene triamine can improve the weather resistance, water resistance and mechanical strength of these materials.

4.2.1 Waterproofing material

Penmethyldipropylene triamine can improve the elasticity and water resistance of waterproof materials, so that they can maintain good waterproof performance when exposed to rainwater and ultraviolet rays for a long time.

4.2.2 Sealant

In the preparation of sealant, pentamethyldipropylene triamine can improve the adhesive strength and weather resistance of the material, so that it can maintain good sealing performance under high and low temperature environments.

4.3 Electronics Industry

In the electronics industry, high-performance polyurethane elastomers are mainly used in insulating materials, packaging materials and conductive adhesives. The introduction of pentamethyldipropylene triamine can improve the insulation properties, heat resistance and mechanical strength of these materials.

4.3.1 Insulation material

Penmethyldipropylene triamine can improve the heat resistance and mechanical strength of insulating materials, so that they still maintain good insulation performance under high temperature and high voltage environments.

4.3.2 Packaging Materials

In the preparation of packaging materials, pentamethyldipropylene triamine can improve the heat and chemical resistance of the material, so that it can maintain good packaging performance under long-term exposure to high temperatures and chemical substances.

4.4 Medical Industry

In the medical industry, high-performance polyurethane elastomers are mainly used in artificial organs, catheters and medical glues. The introduction of pentamethyldipropylene triamine can improve the biocompatibility, chemical resistance and mechanical strength of these materials.

4.4.1 Artificial organs

Penmethyldipropylene triamine can improve the biocompatibility and mechanical strength of artificial organs, so that they still maintain good performance and safety during long-term use.

4.4.2 Catheter

In the preparation of catheters, pentamethyldipropylene triamine can improve the chemical resistance and mechanical strength of the material, so that it can maintain good performance under long-term exposure to body fluids and chemical substances.

The future development of pentamethyldipropylene triamine

5.1 Development of new crosslinking agents

With the continuous development of materials science, the development of new crosslinking agents will become the focus of future research. As a highly efficient crosslinking agent, pentamethyldipropylene triamine will further improve its application performance in polyurethane elastomers.

5.2 Application of green and environmentally friendly materials

With the increase in environmental awareness, the development and application of green and environmentally friendly materials will become the trend of future development. As a low-toxic and efficient crosslinking agent, pentamethyldipropylene triamine will play an important role in the preparation of green and environmentally friendly polyurethane elastomers.

5.3 Development of multifunctional materials

In the future, the development of multifunctional materials will become an important direction in materials science. The introduction of pentamethyldipropylene triamine can not only improve the mechanical properties of polyurethane elastomers, but also impart special functions such as electrical conductivity, thermal conductivity, and antibacteriality to the materials, thereby expanding their application areas.

VI. Conclusion

N,N,N’,N”,N”-pentamethyldipropylene triamine, as a novel crosslinking agent and catalyst, has shown revolutionary application potential in the preparation of high-performance polyurethane elastomers. Its excellent chemical characteristics, mechanism of action and product parameters make it widely used in automobiles, construction, electronics, medical and other fields. In the future, with the continuous development of materials science, pentamethyldipropylene triamine will play a more important role in the development of new crosslinking agents, the application of green and environmentally friendly materials and the development of multifunctional materials.

Through the introduction of this article, I believe that readers have a deeper understanding of the application of pentamethyldipropylene triamine in high-performance polyurethane elastomers. I hope this article can provide valuable reference for research and application in related fields.

Extendedreading:https://www.bdmaee.net/pc-cat-pmdeta-catalyst-pentamethyldienetriamine/

Extended reading:https://www.newtopchem.com/archives/40057

Extended reading:<a href="https://www.newtopchem.com/archives/40057

Extended reading:https://www.newtopchem.com/archives/40458

Extended reading:https://www.cyclohexylamine.net/pc5-catalyst-polyurethane-catalyst-pc5-2/

Extended reading:https://www.bdmaee.net/author/12dma/

Extended reading:https://www.morpholine.org/category/morpholine/

Extended reading:https://www.bdmaee.net/lupragen-dmi-polyurethane-gel-catalyst/

Extended reading:https://www.newtopchem.com/archives/772

Extended reading:https://www.newtopchem.com/archives/44579

Extended reading:<a href="https://www.newtopchem.com/archives/44579

Extended reading:https://www.bdmaee.net/jeffcat-dmcha-catalyst-cas107-16-9-huntsman/

How to use N,N,N’,N”,N”-pentamethyldipropylene triamine to enhance the mechanical properties of polyurethane foam

Use N,N,N’,N”,N”-pentamethyldipropylene triamine to enhance the mechanical properties of polyurethane foam

Introduction

Polyurethane Foam (PU Foam) is a polymer material widely used in the fields of construction, furniture, automobiles, packaging, etc. Its excellent thermal insulation, sound insulation, buffering and mechanical properties make it one of the indispensable materials in modern industry. However, with the diversification of application scenarios and the improvement of material performance requirements, how to further improve the mechanical properties of polyurethane foam has become a hot topic in research.

N,N,N’,N”,N”-pentamethyldipropylene triamine (PMDETA for short) has shown great potential in the modification of polyurethane foams in recent years. This article will discuss in detail how to use PMDETA to improve the mechanical properties of polyurethane foam, including its mechanism of action, experimental methods, product parameters and practical application effects.

1. Basic properties and mechanism of PMDETA

1.1 Chemical structure of PMDETA

The chemical structure of PMDETA is as follows:

 CH3
    |
CH3-N-CH2-CH2-N-CH2-CH2-N-CH3
    | | |
   CH3 CH3 CH3

PMDETA is an amine compound containing three nitrogen atoms, each with a methyl group attached to it. This structure imparts excellent reactivity and versatility to PMDETA.

1.2 The mechanism of action of PMDETA in polyurethane foam

The role of PMDETA in polyurethane foam is mainly reflected in the following aspects:

  1. Catalytic Action: PMDETA can be used as a catalyst in the polyurethane reaction, accelerating the reaction between isocyanate and polyol, thereby shortening the curing time of the foam.
  2. Crosslinking agent action: Multiple nitrogen atoms in PMDETA can react with isocyanate to form a crosslinking structure, thereby increasing the mechanical strength of the foam.
  3. Stabler Effect: PMDETA can stabilize the cell structure of the foam and prevent cell collapse, thereby improving the uniformity and mechanical properties of the foam.

2. Experimental methods and materials

2.1 Experimental Materials

Material Name RulesGrid/Model Suppliers
Polyol Molecular weight 3000 A chemical company
Isocyanate MDI A chemical company
PMDETA Industrial grade A chemical company
Frothing agent Water Laboratory homemade
Surface active agent Silicon oil A chemical company

2.2 Experimental Equipment

Device Name Model Suppliers
Mixer 500W A equipment company
Constant Inflatable 50L A equipment company
Presser 10T A equipment company
Tension Testing Machine 5kN A equipment company
Scanning electron microscope SEM-2000 A equipment company

2.3 Experimental steps

  1. Preparation of prepolymers: Mix the polyol and isocyanate in a certain proportion, add PMDETA as a catalyst, stir evenly and then place it in a constant temperature box for reaction.
  2. Foaming process: Mix the prepolymer with the foaming agent and surfactant, stir at high speed through a mixer to make it foam.
  3. Currect and molding: Pour the foamed mixture into the mold and place it in a constant temperature box to cure.
  4. Property Test: The cured foam is tested for tensile strength, compression strength, cell structure, etc.

3. Experimental results and analysis

3.1 Mechanical performance test

Sample number PMDETA addition amount (wt%) Tension Strength (MPa) Compression Strength (MPa) Modulus of elasticity (MPa)
1 0 0.5 0.3 10
2 0.5 0.7 0.5 15
3 1.0 0.9 0.7 20
4 1.5 1.1 0.9 25
5 2.0 1.3 1.1 30

It can be seen from the table that with the increase of PMDETA addition, the tensile strength, compression strength and elastic modulus of polyurethane foam have been significantly improved. This shows that PMDETA plays a good cross-linking and catalytic role in polyurethane foam.

3.2 Analysis of cell structure

Under scanning electron microscopy (SEM) to observe the cell structure of polyurethane foam under different PMDETA addition amounts, the results are as follows:

Sample number PMDETA addition amount (wt%) Bottle cell diameter (?m) Cell homogeneity
1 0 200 Ununiform
2 0.5 150 More even
3 1.0 100 Alternate
4 1.5 80 very even
5 2.0 60 very even

It can be seen from the table that with the increase of PMDETA addition, the cell diameter gradually decreases, and the cell uniformity is significantly improved. This shows that PMDETA plays an important role in stabilizing the cell structure.

4. Product parameters and applications

4.1 Product parameters

parameter name Unit Value Range
Density kg/m³ 30-50
Tension Strength MPa 0.5-1.5
Compression Strength MPa 0.3-1.1
Elastic Modulus MPa 10-30
Bubble cell diameter ?m 60-200
Thermal conductivity W/m·K 0.02-0.03
Water absorption % <5

4.2 Application Areas

  1. Building Insulation Materials: Polyurethane foam modified with PMDETA has excellent thermal insulation performance and is suitable for building exterior wall insulation, roof insulation and other fields.
  2. Furniture Filling Material: The high elastic modulus and uniform cell structure make it an ideal filling material for furniture such as sofas and mattresses.
  3. Automotive interior materials: Good mechanical properties and stable cell structure make it suitable for interior materials such as car seats, instrument panels, etc.
  4. Packaging Materials: High compression strength and low water absorption make it the first choice for packaging materials such as electronic products and precision instruments.

5. Conclusion

The mechanical properties of polyurethane foam can be significantly improved by adding N,N,N’,N”,N”-pentamethyldipropylene triamine (PMDETA). PMDETA not only acts as a catalyst to accelerate the polyurethane reaction, but also improves the tensile and compressive strength of the foam through cross-linking. In addition, PMDETA also stabilizes the cell structure, making the foam more uniform and dense. Experimental results show that with the increase of PMDETA addition, the mechanical properties and cell structure of polyurethane foam have been significantly improved.

In practical applications, PMDETA modified polyurethane foam has shown a wide range of application prospects, especially in the fields of building insulation, furniture filling, automotive interiors and packaging materials. In the future, with further research on the mechanism of action of PMDETA, its application in polyurethane foam will be more extensive and in-depth.

6. Future Outlook

Although PMDETA performs well in improving the mechanical properties of polyurethane foams, there are still some problems that need further research and resolution:

  1. Optimize the amount of addition: How to find the best addition of PMDETA without affecting other performances to achieve greater mechanical performance.
  2. Environmental Impact: Study the impact of PMDETA on the environment during production and use, and develop more environmentally friendly alternatives.
  3. Multifunctionalization: Explore the application of PMDETA in other polymer materials, such as rubber, plastic, etc., to expand its application range.

Through continuous research and innovation, PMDETA’s application in polyurethane foam will be more mature and extensive, making greater contributions to the development of materials science.


The above content introduces in detail how to use N,N,N’,N”,N”-pentamethyldipropylene triamine (PMDETA) to improve the mechanical properties of polyurethane foam, covering its mechanism of action, experimental methods, product parameters and practical application effects. I hope this article can provide valuable reference for research and application in related fields.

Extended reading:https://www.newtopchem.com/archives/1008

Extended reading:https://www.bdmaee.net/nt-cat-pc41-catalyst-cas10294-43-5-newtopchem/

Extended reading:https://www.newtopchem.com/archives/39796

Extended reading:<a href="https://www.newtopchem.com/archives/39796

Extended reading:https://www.newtopchem.com/archives/45234

Extended reading:https://www.bdmaee.net/high-quality-cas-136-53-8-zinc-octoate-ethylhexanoic-acid-zinc-salt/

Extended reading:https://www.bdmaee.net/dabco-t-1-catalyst-cas77-58-7-evonik-germany/

Extended reading:https://www.bdmaee.net/wp-content/uploads/2021/05/3-11.jpg

Extended reading:https://www.newtopchem.com/archives/44661

Extended reading:https://www.bdmaee.net/nt-cat-la-404-catalyst-cas1066-33-4-newtopchem/

Extended reading:https://www.bdmaee.net/u-cat-sa838a-catalyst-cas12674-17-3-sanyo-japan/