1-Chloro-2,4-dinitrobenzene

1-chloro-2,4-dinitrobenzene structural formula

Structural formula

Business number 02BS
Molecular formula C6H3ClN2O4
Molecular weight 202
label

2,4-dinitrochlorobenzene,

4-Chloro-1,3-dinitrobenzene,

2,4-dinitrobenzene chloride,

1,3-dinitro-4-chlorobenzene,

6-Chloro-1,3-dinitrobenzene,

Chlorodinitrobenzene,

2,4-diazochlorobenzene,

2,4-Dinitrochlorobenzene,

4-Chloro-1,3-dinitrobenzene,

Aromatic nitrogen-containing compounds and their derivatives

Numbering system

CAS number:97-00-7

MDL number:MFCD00007075

EINECS number:202-551-4

RTECS number:CZ0525000

BRN number:613161

PubChem ID:None

Physical property data

1. Characteristics: light yellow or yellow-brown needle-like crystals with a bitter almond smell. [1]

2. Melting point (?): 52~54[2]

3. Boiling point (?) : 315[3]

4. Relative density (water = 1): 1.69[4]

5. Relative Vapor density (air = 1): 6.98[5]

6. Octanol/water partition coefficient: 2.17[6]

7. Flash point (?): 194 (CC) [7]

8. Explosion limit (%): 22.0[8]

9. Lower explosion limit (%): 2.0[9]

10. Solubility: insoluble in water, easily soluble in ethanol and ether. [10]

Toxicological data

1. Skin/eye irritation: Standard Dresser test: human skin contact, 30?g; starting irritation test: rabbit skin contact, 100?g/24H; standard Dresser test: rabbit skin contact, 2mg/24HREACTION SEVERITY, strong reaction; Standard Dresser test: rabbit eye contact, 50?g/24 HREACTION SEVERITY, strong reaction; 2. Acute toxicity: rat oral LD50: 780mg/kg; rat peritoneal cavity LD50: 280mg/kg; rabbit skin contact LD50: 130mg/kg kg; 3. Other multiple dose toxicity: Rat oral TDLo: 2340mg/kg/30D-I; Rat inhalation TCLo: 200 ?g/m3/4H/17W-I; 4. Mutagenicity: Mutant microbial test: Bacteria -Salmonella typhimurium, 3?g/plate; Mutant microorganism test: bacteria-Salmonella typhimurium, 50?g/plate; DNA damage test: rat liver, 5?mol/L; DNA damage test: mouse peritoneal cavity, 30mg/kg; Morphological transformation test: hamster kidney, 10mg/L; 5. It is a highly toxic substance. The time-weighted average allowable concentration of toxic substances in the air in the workplace is 0.6mg/m3, and the allowable concentration for short-term exposure is 1.8mg/m3. Toxic if taken orally, inhaled or in contact with skin, and has cumulative hazards.

6. Acute toxicity[11] LD50: 640mg/kg (rat oral); 130mg/kg (rabbit dermal )

7. Irritation[12]Rabbit transdermal: 100mg (24h), causing irritation (open stimulation test)

8. Mutagenicity[13] Microbial mutagenicity: Salmonella typhimurium 3?g/dish. DNA damage: 30mg/kg in mouse abdominal cavity.

Ecological data

1. Ecotoxicity No data available

2. Biodegradability No data available

3 .Non-biodegradable[14] In the air, when the concentration of hydroxyl radicals is 5.00×105/cm3, the degradation half-life is 750d (theoretical).

4. Other harmful effects[15] This substance is harmful to the environment, and special attention should be paid to the pollution of water bodies. .

Molecular structure data

1. Molar refractive index: 44.23

2. Molar volume (cm3/mol): 125.0

3. Isotonic specific volume (90.2K ): 354.1

4. Surface tension (dyne/cm): 64.2

5. Polarizability: 17.53

Compute chemical data

1. Reference value for hydrophobic parameter calculation (XlogP): None

2. Number of hydrogen bond donors: 0

3. Number of hydrogen bond acceptors: 4

4. Number of rotatable chemical bonds: 0

5. Number of tautomers: none

6. Topological molecule polar surface area 91.6

7. Number of heavy atoms: 13

8. Surface charge: 0

9. Complexity: 224

10. Number of isotope atoms: 0

11. Determine the number of atomic stereocenters: 0

12. Uncertain number of atomic stereocenters: 0

13. Determine the number of chemical bond stereocenters: 0

14. Number of uncertain chemical bond stereocenters: 0

15. Number of covalent bond units: 1

Properties and stability

1. This product is toxic, more toxic than mononitrochlorobenzene. It has a significant irritating effect on the skin and mucous membranes, causing severe dermatitis. It can cause blood poisoning, damage the liver and kidneys, and damage nerves, causing neuralgia and neuritis. Ventilate the maximum allowable concentration in the air. Operators should wear protective equipment. It is prohibited to drink alcohol before or after work. This product can explode when heated to high temperatures. Toxic when inhaled, swallowed or in contact with skin, and has cumulative hazards.

2. Stability[16] Stable

3. Incompatible substances[17] Strong oxidizing agent, strong alkali, strong reducing agent

4. Conditions to avoid contact [18] Vibration, heat

5. Polymerization hazard[19] No polymerization

6. Decomposition products[20] Nitrogen oxides, hydrogen chloride

Storage method

1. Storage precautions [21] Store in a cool, well-ventilated special warehouse, and implement the system of “two people to send and receive, and two people to keep”. Keep away from fire and heat sources. The packaging is sealed. They should be stored separately from oxidants, reducing agents, alkalis, and food chemicals, and avoid mixed storage. Equipped with the appropriate variety and quantity of fire equipment. Suitable materials should be available in the storage area to contain spills.

2. Packed in iron drums, with a net weight of 200kg or 300kg. Store in a ventilated, cool, dry place. Avoid mixed storage and transportation with inorganic oxidants and acids. Store and transport according to regulations for flammable and toxic substances.

Synthesis method

1. Obtained from nitrification of chlorobenzene twice with mixed acid. The two-step nitrification process realizes continuous production, and the production device mainly consists of four reaction towers. The mixed acid (nitric acid accounts for 33.1%, sulfuric acid accounts for 62.88%, and the rest is water) is continuously passed through four reaction towers at a flow rate of 11.3kg/min and chlorobenzene at a flow rate of 3.18kg/min. The reaction temperatures are controlled at 75-85°C and 100°C respectively. ?, 120±20? and 125±2?. After reacting for about 3 hours, the reaction product is washed with water to obtain a qualified product.

2. By pair, neighbor The by-product co-melting oil of chlorobenzene is nitrated with mixed acid, separated waste acid, neutralized, washed with water and purified by crystallization to obtain the finished product, and 2,6-oil is produced as a by-product.

3.Chlorobenzene is nitrated twice with mixed acid, and the reaction product is washed with water and separated to obtain the product.

4.Place a mixed acid solution with a nitric acid content of 33.1% and a sulfuric acid content of 62.88% and chlorobenzene at 11.3kg/min respectively. and 3.18kg/min flow continuously through 4 reactors. The reaction temperatures are controlled at 75~85?, 100?, (120±2)? and (125±2)? respectively, and the residence time of the reactants is controlled to 3h. , the obtained product is poured into crushed ice to solidify, and after standing, filtering, washing with water, dissolving in hot ethanol, cooling, and filtering to dryness, the finished product is obtained. The process reaction is:

5. It is produced from chlorobenzene and mixed acid through two-step nitration batch reaction. In the first step of nitrification, first use 1400kg chlorobenzene to extract the previous batch of nitration waste acid, separate the waste acid after stratification, then add 1500kg of the previous batch of second-step nitrification waste acid and 830kg of 98% nitric acid and the previous batch of second-step nitrification waste acid. The mixed acid consists of 770kg of waste acid, and the feeding temperature is controlled at about 55°C. After the addition is completed, raise the temperature to 80°C for 30 minutes. After the stratification is complete, the waste acid is separated.To the obtained p-nitrochlorobenzene, a mixed acid composed of 2000kg of 98% sulfuric acid and 880kg of 98% nitric acid was slowly added. The feeding temperature was controlled at 65°C. After the addition, the temperature was raised to 100°C for 1 hour, and the mixture was allowed to stand for stratification and the waste was separated. Acid layer, the obtained crude dinitrochlorobenzene is washed with water and treated with ethanol to obtain the pure product.

Purpose

1. Identify nicotinic acid, nicotinamide and other pyridine compounds. Identification of Thiol Compounds Thiols. Standard for the determination of carbon, hydrogen and chlorine in organic microanalyses. Molecular polymerization inhibitors commonly used in industry, dosage 0.10% ~ 0.001%. This product is used to manufacture dyes, pesticides, and medicines. It can also be used to prepare sulfate black dye, ice dye, saccharin, dinitroaniline, picric acid, p-nitroanthrinobenzene and other products.

2. Molecular polymerization inhibitor commonly used in industry, dosage 0.001% ~ 0.10%. It can be used to make dyes, pesticides, medicines, and can also be used to prepare sulfur black dye, ice dye, saccharin, dinitroaniline, picric acid, p-nitroanthralide and other products.

3. Used as a chromogenic reagent for the detection of nicotinic acid, nicotinamide and pyridoxal (vitamin B6) by thin layer chromatography.

4. Used as raw materials for synthetic dyes, pesticides and medicines. [22]

extended-reading:https://www.newtopchem.com/archives/category/products/page/89
extended-reading:https://www.bdmaee.net/jeffcat-zr-50-catalyst-cas67151-63-7-huntsman/
extended-reading:https://www.cyclohexylamine.net/trimethylhydroxyethyl-bisaminoethyl-ether-jeffcat-zf-10/
extended-reading:https://www.cyclohexylamine.net/high-quality-n-methylimidazole-cas-616-47-7-1-methylimidazole/
extended-reading:https://www.cyclohexylamine.net/dabco-eg-pc-cat-td-33eg-niax-a-533/
extended-reading:https://www.bdmaee.net/dabco-mp601-delayed-equilibrium-catalyst-dabco-mp601-catalyst/
extended-reading:https://www.cyclohexylamine.net/catalyst-1028-polyurethane-catalyst-1028/
extended-reading:https://www.bdmaee.net/retardation-catalyst-c-225/
extended-reading:https://www.bdmaee.net/fascat4102-catalyst-monobutyl-triiso-octoate-tin-arkema-pmc/
extended-reading:https://www.newtopchem.com/archives/40053

Monomethylamine

Monomethylamine structural formula

Structural formula

Business number 01HM
Molecular formula CH5N
Molecular weight 31.06
label

aminomethane,

monomethylamine,

aminomethane

Numbering system

CAS number:74-89-5

MDL number:MFCD00008104

EINECS number:200-820-0

RTECS number:PF6300000

BRN number:741851

PubChem number:24857793

Physical property data

1. Characteristics: colorless gas with ammonia-like odor. [1]

2. Melting point (?): -93.5[2]

3. Boiling point (?): -6.3[3]

4. Relative density (water=1): 0.66 (25?)[4]

5. Relative vapor density (air=1): 1.08[5]

6. Saturated vapor pressure (kPa): 304 (20?)[6]

7. Heat of combustion (kJ/mol): -1085.6[7]

8. Critical temperature (?): 157.6[8]

9. Critical pressure (MPa): 7.614[9]

10. Octanol/water partition coefficient :-0.57[10]

11. Flash point (?): 0 (CC)[11]

12 .Ignition temperature (?): 430[12]

13. Explosion limit (%): 21[13]

14. Lower explosion limit (%): 5[14]

15. Solubility: easily soluble in water, soluble in ethanol, ether, benzene, acetone, etc. [15]

Toxicological data

1. Acute toxicity[16] LC50: 2400mg/m3 (mouse inhalation, 2h)

2. Irritation[17]

Transdermal use in rabbits: 1.0ml of 40% solution can cause skin irritation and necrosis in rabbits.

Rabbit eye: 4% solution can cause corneal damage in rabbits.

3. Subacute and chronic toxicity [18] Guinea pigs first inhaled 0.25mg/L for 93 days, and then inhaled 0.5mg/L for 30 days. It begins with transient irritation and eventually leads to failure and dysfunction of hepatic prothrombin formation.

4. Mutagenicity[19] Rat inhalation 10?g/m3positive lethality test, 3mmol /L can cause lymphocyte mutations in mice.

Ecological data

1. Ecotoxicity[20]

LC50: 10~30mg/L (96h) (fish)

EC50: 480mg/L (48h) (Daphnia)

2. Biodegradability [21] 96% degradation in OECD screening test.

3. Non-biodegradability[22] In the air, when the hydroxyl radical concentration is 5.00×105 pcs/cm3, the degradation half-life is 18h (theoretical).

Molecular structure data

1. Molar refractive index: 10.21

2. Molar volume (cm3/mol): 48.7

3. Isotonic specific volume (90.2K ): 100.9

4. Surface tension (dyne/cm): 18.4

5. Polarizability (10-24cm3): 4.05

Compute chemical data

1.HydrophobicReference value for ?? calculation (XlogP): -0.7

2. Number of hydrogen bond donors: 1

3. Number of hydrogen bond acceptors: 1

4. Number of rotatable chemical bonds: 0

5. Number of tautomers: none

6. Topological molecule polar surface area 26

7. Number of heavy atoms: 2

8. Surface charge: 0

9. Complexity: 2

10. Number of isotope atoms: 0

11. Determine the number of atomic stereocenters: 0

12. Uncertain number of atomic stereocenters: 0

13. Determine the number of chemical bond stereocenters: 0

14. Number of uncertain chemical bond stereocenters: 0

15. Number of covalent bond units: 1

Properties and stability

1. Methylamine aqueous solution or alcohol solution are both flammable liquids. Because it has a low flash point, is volatile, toxic, and can form explosive mixtures with air, avoid direct sunlight and devices prone to static electricity. Methylamine is corrosive to copper or copper alloys, aluminum, tin and galvanized iron. Flammable.

2. Typical reactions with primary amines having chemical properties:

? The aqueous solution is alkaline, and reacts with inorganic acids, organic acids, acidic aromatic nitro compounds, etc. to form compounds with a certain melting point of salt. It forms complex salts with heavy metal chlorides such as copper and silver.

? Acylation reaction occurs with acid chloride, acid anhydride, etc. to generate N-substituted amide. The salt formed with carboxylic acid also generates N-substituted amide upon dehydration. Reacts with benzene sulfonyl chloride to generate N-substituted benzenesulfonamide.

? By reacting with hydrocarbylation reagents such as halogenated hydrocarbons, alcohols, phenols or amine salts, the hydrogen atoms on the nitrogen can be replaced by hydrocarbon groups.

? Addition reactions can occur with cyanic acid, carbon disulfide, nitriles, epoxides, etc.

? Primary amine reacts with aliphatic or aromatic and dehydrates to form Schiff base.

? Primary amines are relatively stable to acidic potassium permanganate, but are easily oxidized by alkaline potassium permanganate to generate aldehydes or carboxylic acids. Under the action of persulfuric acid, hydrogen peroxide, and organic peroxyacid, amine oxygen-containing compounds are obtained.

? Reacts with nitrous acid to quantitatively generate nitrogen gas.

? Heating with chloroform and potassium hydroxide alcohol solution to generate isonitrile.

? Reacts with Grignard reagent to generate hydrocarbons.

In addition, methylamine undergoes pyrolysis at 550~670°C to generate ammonia, hydrogen cyanide, methane, hydrogen and nitrogen. It can also decompose under ultraviolet light to generate gases and liquids such as methane and nitrogen.

3. Stability[23] Stable

4. Incompatible substances[24] Acids, halogens, acid anhydrides, strong oxidants, chloroform

5. Polymerization hazard[25] No polymerization

6. Decomposition products[26] Ammonia

Storage method

Storage Precautions[27] Stored in a cool, ventilated warehouse dedicated to flammable gases. Keep away from fire and heat sources. The storage temperature should not exceed 30?. Keep container tightly sealed. They should be stored separately from oxidants, acids, halogens, etc. and avoid mixed storage. Use explosion-proof lighting and ventilation facilities. It is prohibited to use mechanical equipment and tools that are prone to sparks. The storage area should be equipped with leakage emergency response equipment.

Synthesis method

1. Industrially, methylamine is synthesized by passing methanol and ammonia through a converter equipped with an activated alumina catalyst at high temperature. However, the methylation reaction does not stop at the first methylamine stage, so the resulting A mixture of methylamine, dimethylamine and trimethylamine. Controlling the ratio of methanol and ammonia to make excess ammonia, adding water and circulating trimethylamine is beneficial to the generation of monomethylamine and dimethylamine. When the amount of ammonia is 2.5 times that of methanol, the reaction temperature is 425°C, and the reaction pressure is 2.45MPa, Mixed amines with 10-12% monomethylamine, 8-9% dimethylamine and 11-13% trimethylamine can be obtained. Since trimethylamine forms an azeotrope with ammonia and other methylamines under normal pressure, the reaction product is separated using a combination of pressure distillation and extractive distillation. Calculated to produce 1 ton of mixed methylamine, 1500kg of methanol and 500kg of liquid ammonia are required. According to relevant literature reports, changing the ratio of methanol and ammonia is an effective method to obtain the desired product. When the ratio of methanol and ammonia is 1:1.5, it is the best condition for generating trimethylamine, and the ratio of methanol and ammonia is 1:4. This is the best condition for generating monomethylamine.

Refining method: It often contains impurities such as dimethylamine, trimethylamine, methanol, and ammonia. During refining, the methylamine aqueous solution is first extracted and distilled to remove trimethylamine, and then dimethylamine is removed by fractional distillation. Methylamine hydrochloride can also be extracted with dry chloroform for more than 30 hours to remove higher amines, and then refined by recrystallization with ethanol (m.p. 225~226°C). Or first fractionate the condensate produced by methylamine and formaldehyde, and decompose the distillate in butanol with hydrochloric acid. The resulting hydrochloride salt was recrystallized from ethanol. The refined methylamine hydrochloride thus obtained is decomposed with excess potassium hydroxide or sodium hydroxide, and the gaseous methylamine obtained is dehydrated by solid potassium hydroxide, and then traces of ammonia are removed with silver oxide. Then use dry ice and diethyl ether to cool and liquefy, and dry the sodium fluorenone to obtain pure methylamine. Other refining methods include recrystallizing methylamine hydrochloride with butanol, absolute ethanol or a mixture of methanol and chloroform, washing with chloroform to remove trace amounts of dimethylamine hydrochloride, and then drying in a vacuum dryer. .

2. Aqueous solution. Mix 40% methylamine aqueous solution with distilled water to make a 30% methylamine solution.

Purpose

Used in the synthesis of rubber vulcanization accelerators, dyes, medicines, pesticides, surfactants, etc. [28]

extended-reading:https://www.newtopchem.com/archives/44903
extended-reading:https://www.newtopchem.com/archives/827
extended-reading:https://www.newtopchem.com/archives/40065
extended-reading:https://www.cyclohexylamine.net/low-odor-amine-catalyst-pt305-reactive-amine-catalyst-pt305/
extended-reading:https://www.bdmaee.net/fascat8201-catalyst-2/
extended-reading:https://www.newtopchem.com/archives/1095
extended-reading:https://www.bdmaee.net/jeffcat-dmp-lupragen-n204-pc-cat-dmp/
extended-reading:https://www.newtopchem.com/archives/40292
extended-reading:https://www.newtopchem.com/archives/935
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/New-generation-sponge-hardener.pdf

4-Chloro-3-nitrobenzoic acid

4-chloro-3-nitrobenzoic acid structural formula

Structural formula

Business number 02BR
Molecular formula C7H4ClNO4
Molecular weight 201.57
label

3-nitro-4-chlorobenzoic acid

Numbering system

CAS number:96-99-1

MDL number:MFCD00007079

EINECS number:202-550-9

RTECS number:DG5425050

BRN number:783626

PubChem number:24855387

Physical property data

1. Properties: light yellow crystalline powder.

2. Density (g/mL, 20?): 1.645

3. Relative vapor density (g/mL, air=1): Undetermined

4. Melting point (ºC): 181-182

5. Boiling point (ºC, normal pressure): Undetermined

6. Boiling point (ºC, kPa): Undetermined

p>

7. Refractive index: Undetermined

8. Flash point (ºC): Undetermined

9. Specific rotation (º): Undetermined

10. Autoignition point or ignition temperature (ºC): Not determined

11. Vapor pressure (mmHg, 20.2ºC): Not determined

12. Saturated vapor pressure (kPa, ºC): Undetermined

13. Heat of combustion (KJ/mol): Undetermined

14. Critical temperature (ºC): Undetermined

15. Critical pressure (KPa): Undetermined

16. Log value of oil-water (octanol/water) distribution coefficient: Undetermined

17. Explosion upper limit (%, V /V): Undetermined

18. Lower explosion limit (%, V/V): Undetermined

19. Solubility: Easily soluble in hot water and soluble in alcohol.

Toxicological data

1. Acute toxicity: Rat oral LD50: 3150mg/kg; oral LD50 of wild birds: 75mg/kg; 2. Mutagenicity: Mutant microbial test: bacteria – Salmonella typhimurium, 500?g/plate;

Ecological data

None

Molecular structure data

1. Molar refractive index: 44.62

2. Molar volume (cm3/mol): 125.7

3. Isotonic specific volume (90.2K ): 360.7

4. Surface tension (dyne/cm): 67.7

5. Polarizability (10-24cm3): 17.69

Compute chemical data

1. Reference value for hydrophobic parameter calculation (XlogP): None

2. Number of hydrogen bond donors: 1

3. Number of hydrogen bond acceptors: 4

4. Number of rotatable chemical bonds: 1

5. Number of tautomers: none

6. Topological molecule polar surface area 83.1

7. Number of heavy atoms: 13

8. Surface charge: 0

9. Complexity: 227

10. Number of isotope atoms: 0

11. Determine the number of atomic stereocenters: 0

12. Uncertain number of atomic stereocenters: 0

13. Determine the number of chemical bond stereocenters: 0

14. Number of uncertain chemical bond stereocenters: 0

15. Number of covalent bond units: 1

Properties and stabilitySex

None

Storage method

None

Synthesis method

It is obtained by nitration of p-chlorobenzoic acid. There are several methods for nitrification operation. (1) Add p-chlorobenzoic acid and sulfuric acid to industrial hydrochloric acid in batches. After the addition is completed, keep the reaction at 50-65°C for 5 hours and leave it overnight. Then pour the nitrate into ice water, filter it dry, and wash it with water to obtain the crude product. Then dissolve it with ethanol, decolorize it, filter it, precipitate crystals in distilled water, and dry it to get the finished product. (2) Nitrate p-chlorobenzoic acid in concentrated nitric acid with a molar excess of 15 times, and react for 6 hours below 20°C. The yield is 90%. (3) Use methylene chloride as the solvent and use mixed acid to perform nitration at its boiling point, with a yield of more than 97%. In addition, this product can also be obtained from p-chlorotrichlorotoluene through the following reaction. The nitrification reaction was carried out at 55-60°C for 15 minutes, and the yield was 92%.

Purpose

Organic synthesis intermediate, used in the production of dyes and pharmaceuticals to manufacture the drug methylimidazole.

extended-reading:https://www.bdmaee.net/nt-cat-dmdee-catalyst-cas110-18-9-newtopchem/
extended-reading:https://www.cyclohexylamine.net/low-odor-polyurethane-catalyst-polyurethane-rigid-foam-catalyst/
extended-reading:https://www.bdmaee.net/niax-ef-350-low-odor-balanced-tertiary-amine-catalyst-momentive/
extended-reading:https://www.newtopchem.com/archives/654
extended-reading:https://www.bdmaee.net/dabco-t-26-catalyst-cas11207-74-9-evonik-germany/
extended-reading:https://www.newtopchem.com/archives/40230
extended-reading:https://www.newtopchem.com/archives/968
extended-reading:https://www.newtopchem.com/archives/44613
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/130-2.jpg
extended-reading:https://www.newtopchem.com/archives/206