Dibutyltin monooctyl maleate market analysis and price trends

Introduction

Dibutyltin monooctyl maleate (DBMS for short), as a type of PVC heat stabilizer, occupies an important position in the PVC processing industry because of its excellent thermal stability and processing characteristics. With the continuous development of the PVC market and increasingly stringent environmental protection requirements, the market performance and price trends of DBMS have become the focus of attention both inside and outside the industry.

Market Overview

Dibutyltin monooctyl maleate is mainly used in the production of PVC products, especially those that require high transparency and good thermal stability, such as films, hoses and cables. In recent years, as global PVC consumption has increased, the demand for DBMS has also increased. However, the environmental and health effects of organotin compounds have attracted widespread attention, prompting the industry to search for more environmentally friendly alternatives, which has had an impact on the market share and price of DBMS.

Price Trend

Looking back over the past few years, the price fluctuations of DBMS have been affected by a variety of factors, including raw material costs, progress in production technology, supply and demand relationships, and adjustments to environmental policies. At the beginning of 2023, an in-depth research report pointed out that the price trend of dibutyltin maleate is affected by the supply of upstream raw materials, production demand, and import and export market dynamics. With the maturity of production technology and large-scale production, costs have declined, but in certain periods, prices may rise due to fluctuations in raw material prices or tightening of environmental policies.

Influencing factors

  • Raw material cost: As an organotin compound, the production cost of DBMS is directly affected by the price of tin and monooctyl maleate. Fluctuations in the price of tin metal are directly related to the cost basis of DBMS.
  • Environmental protection policies: Restrictions and bans on organotin compounds are gradually increasing globally, especially environmental policies such as the EU REACH regulations, which have set strict standards for the production and use of DBMS, increasing compliance costs.
  • Technological innovation: The research and development of new stabilizers may affect the market position of DBMS. If the new thermal stabilizer has better performance or lower environmental impact, it may seize the DBMS part. market share.
  • Supply and demand relationship: The development of the PVC industry and the expansion of downstream application fields, such as changes in demand in the construction, automotive and medical industries, directly affect the supply and demand balance of DBMS.

Market Outlook

It is expected that the DBMS market will face a more complex environment in the next few years. On the one hand, as the PVC industry transforms towards higher quality and environmental protection, the demand for DBMS will continue to exist, especially in the field of high-end PVC products. On the other hand, tightening environmental regulations may limit its use in certain areas and push the market toward greener alternatives. Manufacturers need to pay close attention to market dynamics and adjust product structure and market strategies in a timely manner to cope with challenges and seize opportunities.

Conclusion

Market analysis of dibutyltin monooctyl maleate shows that although it faces challenges from environmental protection policies and technological progress, its application value in specific fields is still solid. Price trends are affected by many factors, and companies need to respond flexibly, optimize supply chain management, and strengthen technology research and development to maintain market competitiveness. In the future, the market performance of DBMS will depend on whether it can meet more stringent environmental standards while meeting performance requirements.


The above analysis is based on historical data and industry trends. Taking into account the complexity and uncertainty of the market environment, actual prices and market performance may vary depending on the specific time. Varies by region. Industry participants are advised to regularly monitor market dynamics and develop flexible business strategies to respond to future market changes.

Extended reading:

CAS:2212-32-0 – Manufacturer of N,N-Dicyclohexylmethylamine and N,N-Dimethylcyclohexylamine – Shanghai Ohans Co., LTD

N,N-Dicyclohexylmethylamine – Manufacturer of N,N-Dicyclohexylmethylamine and N,N-Dimethylcyclohexylamine – Shanghai Ohans Co ., LTD

bismuth neodecanoate/CAS 251-964-6 – Amine Catalysts (newtopchem.com)

stannous neodecanoate catalysts – Amine Catalysts (newtopchem.com)

polyurethane tertiary amine catalyst/Dabco 2039 catalyst – Amine Catalysts (newtopchem.com)

DMCHA – morpholine

N-Methylmorpholine – morpholine

Polycat 41 catalyst CAS10294-43-5 Evonik Germany – BDMAEE

Polycat DBU catalyst CAS6674-22-2 Evonik Germany – BDMAEE

Application of dibutyltin monooctyl maleate in soft PVC

Introduction

Dibutyltin monooctyl maleate (DBMS), as a high-performance organic tin heat stabilizer, is widely used in polyvinyl chloride (PVC) processing, especially in the production of soft PVC products. Its unique advantages make it the preferred material in the industry. This article aims to explore the application characteristics, mechanism of action and market prospects of DBMS in soft PVC.

Characteristics and challenges of soft PVC

Soft PVC obtains flexibility and elasticity by adding plasticizers such as phthalates, and is widely used in films, wires and cables, toys, medical supplies and other fields. However, soft PVC faces the risk of thermal and oxidative degradation during processing and use, which can lead to reduced material performance, discoloration, brittleness and other problems. Therefore, choosing the right heat stabilizer is crucial to extending the service life of soft PVC.

The mechanism and advantages of DBMS

The application of dibutyltin monooctyl maleate in soft PVC is mainly based on its following mechanism of action and characteristics:

  1. HCl absorption capacity: DBMS can effectively capture the hydrogen chloride (HCl) released during the decomposition of PVC, preventing it from further catalyzing the degradation reaction, thereby protecting the integrity of the PVC molecular chain.
  2. Free radical scavenging: During the thermal processing of PVC, DBMS can capture free radicals and prevent them from causing chain cleavage, thus improving the thermal stability of PVC.
  3. Antioxidant performance: DBMS can also provide a certain degree of antioxidant protection to prevent PVC from deteriorating due to oxidation during long-term use.
  4. Good compatibility: DBMS has good compatibility with PVC and plasticizers and will not affect the transparency and softness of soft PVC.

Application examples in soft PVC

In the production of soft PVC films, the addition of DBMS can significantly improve the film’s transparency and anti-yellowing ability, and extend its life for outdoor use. In the manufacturing of wire and cable insulation layers, DBMS can ensure the thermal stability of the material during processing and long-term use, and avoid electrical performance degradation caused by thermal degradation. In addition, the low toxicity of DBMS makes it an ideal choice among medical-grade soft PVC products that can meet strict hygiene and safety standards.

Market trends and prospects

With the increasing global awareness of environmental protection and health, the use of organotin compounds has been subject to certain restrictions. However, DBMS still has its place in some specific soft PVC applications due to its lower toxicity levels and excellent performance. In the future, the DBMS market will be affected by two factors: First, stricter environmental regulations may push the industry to shift to greener stabilizers; second, technological progress may lead to the development of alternatives with better performance and better environmental protection. . Despite the challenges, demand for DBMS in high-performance and specialty applications will continue, especially in soft PVC products with extremely high requirements for transparency, stability and safety.

Conclusion

Dibutyltin monooctyl maleate is an ideal heat stabilizer for soft PVC. Through its unique chemical properties and mechanism of action, it is an ideal thermal stabilizer for soft PVC. High-quality PVC products provide necessary protection, extend their service life, and improve product quality and performance. Facing the dual challenges of market and technology, the application of DBMS will pay more attention to its value in specific fields, while seeking harmonious coexistence with environmental protection trends to achieve sustainable development.


This analysis is based on current industry knowledge and practice. Taking into account the rapid development of the soft PVC market and stabilizer technology, future product formulas and market strategies may need to be adjusted based on new scientific research results and environmental protection requirements.

Extended reading:

CAS:2212-32-0 – Manufacturer of N,N-Dicyclohexylmethylamine and N,N-Dimethylcyclohexylamine – Shanghai Ohans Co., LTD

N,N-Dicyclohexylmethylamine – Manufacturer of N,N-Dicyclohexylmethylamine and N,N-Dimethylcyclohexylamine – Shanghai Ohans Co ., LTD

bismuth neodecanoate/CAS 251-964-6 – Amine Catalysts (newtopchem.com)

stannous neodecanoate catalysts – Amine Catalysts (newtopchem.com)

polyurethane tertiary amine catalyst/Dabco 2039 catalyst – Amine Catalysts (newtopchem.com)

DMCHA – morpholine

N-Methylmorpholine – morpholine

Polycat 41 catalyst CAS10294-43-5 Evonik Germany – BDMAEE

Polycat DBU catalyst CAS6674-22-2 Evonik Germany – BDMAEE

Comparison between dibutyltin monooctyl maleate and other heat stabilizers

Introduction

Polyvinyl chloride (PVC) is one of the widely used plastics. The selection of heat stabilizer during its processing is crucial to prevent thermal degradation and oxidation and maintain the performance of the material. Dibutyltin monooctyl maleate (DBMS) is a kind of organotin heat stabilizer. Compared with other types of heat stabilizers, it has unique performance and application range. This article will discuss the differences between DBMS and calcium zinc, lead salt, barium zinc and composite heat stabilizers, as well as their respective characteristics and applicable scenarios.

Organotin heat stabilizer: dibutyltin monooctyl maleate (DBMS)

DBMS is known for its excellent thermal stability and transparency. It is especially suitable for PVC products with high requirements on transparency and color stability, such as films, hoses, cables, etc. Its advantages are:

  • High thermal stability: Effectively inhibits the formation of HCl and prevents further degradation of PVC chains.
  • Good transparency: Maintain the original color of PVC products, suitable for transparent or light-colored products.
  • No sulfide pollution: No sulfide will be introduced during processing, maintaining the purity of the product.
  • Lubricity: Provides slight internal lubrication effect to improve PVC melt fluidity.

Calcium zinc heat stabilizer

Calcium zinc heat stabilizers are a non-toxic, environmentally friendly alternative suitable for food contact and medical applications. Their main advantages include:

  • Environmentally friendly: Contains no heavy metals and complies with RoHS and REACH regulations.
  • Biocompatibility: Suitable for medical and food packaging fields.
  • Antistatic: Certain formulations provide antistatic properties.
  • Cost-effectiveness: Lower cost compared to organotin.

However, the thermal stability and transparency of calcium-zinc heat stabilizers are generally not as good as those of organotin, especially under high-temperature processing conditions.

Lead salt heat stabilizer

Lead salt was once a commonly used heat stabilizer in the PVC industry, with excellent thermal stability and cost-effectiveness. But the main disadvantages of lead salt are:

  • Environmental and Health Risks: Contains lead, which is harmful to the environment and human health.
  • Sulfide pollution: It is easy to cause sulfide pollution, which limits its application in transparent products.
  • Color Stability: May cause discoloration of the product.

Barium zinc heat stabilizer

Barium-zinc heat stabilizer combines the environmental protection properties of calcium and zinc with high thermal stability, and is an intermediate option between lead salts and organotin. Their advantages include:

  • Environmentally friendly: Lead-free, reducing environmental and health risks.
  • Better thermal stability: Better than calcium zinc, but slightly lower than organotin.
  • Cost: Between calcium zinc and organotin.

Composite heat stabilizer

Composite heat stabilizers combine the advantages of different types of heat stabilizers, usually containing organotin, calcium zinc or barium zinc, as well as auxiliary stabilizers such as epoxy compounds and antioxidants. Their design goals are:

  • Comprehensive performance: Provides higher thermal stability, processing performance and color stability.
  • Flexibility: Adapt formulations to different applications to meet specific needs.
  • Environmental adaptability: Ingredients can be adjusted according to environmental regulations to meet various market requirements.

Comparison summary

  • Performance comparison: Organotins such as DBMS are leading in terms of thermal stability and transparency, but the cost is higher and environmental health issues are worthy of concern.
  • Environmental protection comparison: Calcium zinc and barium zinc heat stabilizers are better in terms of environmental protection, but thermal stability and cost-effectiveness need to be weighed.
  • Application comparison: DBMS is suitable for applications with high performance requirements, while calcium zinc and barium zinc are more suitable for applications with high sensitivity to cost and environmental protection.

Conclusion

The selection of dibutyltin monooctyl maleate (DBMS) and other thermal stabilizers should be based on the requirements of the specific application, including but not limited to thermal Stability, transparency, cost, environmental protection and processing performance. As the industry attaches great importance to sustainable development, the research and development of heat stabilizers will focus more on improving performance while reducing environmental impact. In the future, more new stabilizers with high performance and low environmental impact may emerge.


The above comparison is based on existing technology and industry knowledge. With the advancement of new materials and technology in the future, the performance and market structure of heat stabilizers may change. Manufacturers and end users should continue to monitor industry trends to make the best product choices.

Extended reading:

CAS:2212-32-0 – Manufacturer of N,N-Dicyclohexylmethylamine and N,N-Dimethylcyclohexylamine – Shanghai Ohans Co., LTD

N,N-Dicyclohexylmethylamine – Manufacturer of N,N-Dicyclohexylmethylamine and N,N-Dimethylcyclohexylamine – Shanghai Ohans Co ., LTD

bismuth neodecanoate/CAS 251-964-6 – Amine Catalysts (newtopchem.com)

stannous neodecanoate catalysts – Amine Catalysts (newtopchem.com)

polyurethane tertiary amine catalyst/Dabco 2039 catalyst – Amine Catalysts (newtopchem.com)

DMCHA – morpholine

N-Methylmorpholine – morpholine

Polycat 41 catalyst CAS10294-43-5 Evonik Germany – BDMAEE

Polycat DBU catalyst CAS6674-22-2 Evonik Germany – BDMAEE