Analysis of the catalytic effect of bismuth isooctanoate in the curing process of thermosetting resins

Analysis of the catalytic effect of bismuth isooctanoate in the curing process of thermosetting resin

Abstract

Thermosetting resin is a type of polymer material that forms a three-dimensional network structure through chemical cross-linking reactions. It is widely used in composite materials, coatings, adhesives, electronic packaging and other fields. In the curing process of thermosetting resin, catalysts play a vital role, which can significantly increase the curing speed and improve the properties of the cured product. Bismuth Neodecanoate, as an efficient organometallic catalyst, shows unique advantages in the curing process of thermosetting resins. This article reviews the catalytic mechanism of bismuth isooctanoate in the curing process of thermosetting resins and its impact on properties, and discusses its effectiveness in practical applications.

1. Introduction

Thermosetting resin is a type of polymer material that transforms from linear or branched molecules into a three-dimensional network structure under the action of heating or chemical cross-linking. This type of resin has excellent mechanical properties, heat resistance and chemical resistance, and is widely used in composite materials, coatings, adhesives, electronic packaging and other fields. In the curing process of thermosetting resin, catalysts play a vital role, which can significantly increase the curing speed and improve the properties of the cured product. Traditional catalysts include sulfur, peroxides, metal oxides, etc., but these catalysts often have problems such as slow reaction rates, high toxicity, and serious environmental pollution. In recent years, bismuth isooctanoate, as an efficient organometallic catalyst, has shown unique advantages in the curing process of thermosetting resins and has attracted widespread attention.

2. Properties of bismuth isooctanoate

Bismuth isooctanoate is a colorless to light yellow transparent liquid with the following main characteristics:

  • Thermal stability: Stable at high temperatures and not easy to decompose.
  • Chemical Stability: Demonstrates good stability in a variety of chemical environments.
  • Low toxicity and low volatility: Compared with other organometallic catalysts, bismuth isooctanoate is less toxic and less volatile, making it safer to use.
  • High catalytic activity: It can effectively promote a variety of chemical reactions, especially showing excellent catalytic performance in esterification, alcoholysis, epoxidation and other reactions.

3. Catalytic mechanism of bismuth isooctanoate in the curing process of thermosetting resin

3.1 Epoxy resin

Epoxy resin is a widely used thermosetting resin whose curing process involves the reaction of epoxy groups with a hardener. The catalytic mechanism of bismuth isooctanoate in the curing process of epoxy resin mainly includes the following steps:

  1. Proton transfer: The bismuth ion in bismuth isooctanoate can accept the proton of the epoxy group to form an intermediate.
  2. Nucleophilic attack: The bismuth ions in the intermediate undergo nucleophilic attack with the hardener (such as amines and acid anhydrides) to form a new intermediate.
  3. Proton transfer: The proton in the new intermediate is transferred to another epoxy group to form a cross-linked structure.
  4. Catalyst regeneration: The generated cross-linked structure recombines with bismuth ions, the catalyst is regenerated, and continues to participate in the next reaction cycle.
3.2 Polyurethane resin

Polyurethane resin is a type of thermosetting resin formed through the reaction of isocyanate and polyol. The catalytic mechanism of bismuth isooctanoate in the curing process of polyurethane resin mainly includes the following steps:

  1. Proton transfer: The bismuth ion in bismuth isocyanate can accept the proton of isocyanate to form an intermediate.
  2. Nucleophilic attack: The bismuth ions in the intermediate undergo nucleophilic attack with the polyol to form a new intermediate.
  3. Proton transfer: The proton in the new intermediate is transferred to another isocyanate molecule, forming a cross-linked structure.
  4. Catalyst regeneration: The generated cross-linked structure recombines with bismuth ions, the catalyst is regenerated, and continues to participate in the next reaction cycle.
3.3 Unsaturated polyester resin

Unsaturated polyester resin is a type of thermosetting resin formed through the cross-linking reaction of double bonds. The catalytic mechanism of bismuth isooctanoate in the curing process of unsaturated polyester resin mainly includes the following steps:

  1. Proton transfer: The bismuth ion in bismuth isooctanoate can accept the proton of the double bond to form an intermediate.
  2. Nucleophilic attack: The bismuth ions in the intermediate undergo nucleophilic attack with peroxides (such as benzoyl peroxide) to form free radicals.
  3. Free radical polymerization: Free radicals initiate a cross-linking reaction of double bonds to form a cross-linked structure.
  4. Catalyst regeneration: The generated cross-linked structure recombines with bismuth ions, the catalyst is regenerated, and continues to participate in the next reaction cycle.

4. Effect of bismuth isooctanoate on the properties of thermosetting resin

4.1 Curing speed

Bismuth isooctanoate can significantly accelerate the curing reaction of thermosetting resin and shorten the curing time. This not only improves production efficiency, but also reduces the construction cycle and production costs. For example, in epoxy resin, adding 0.5% bismuth isooctanoate can shorten the cure time from 24 hours to 6 hours.

4.2 Mechanical properties

Bismuth isooctanoate can improve the mechanical properties of thermosetting resins and improve solid properties.??The strength and toughness of the product. By adjusting the amount of catalyst, the hardness and flexibility of the cured product can be precisely controlled to meet the needs of different application scenarios. For example, in polyurethane resin, adding 0.3% bismuth isooctanoate can significantly improve its tensile strength and impact strength.

4.3 Heat resistance

Bismuth isooctanoate can improve the heat resistance of thermosetting resins, allowing them to maintain good performance in high temperature environments. This helps extend product life and improve product reliability. For example, in unsaturated polyester resin, adding 0.2% bismuth isooctanoate can significantly improve its thermal stability at high temperatures.

4.4 Chemical resistance

Bismuth isooctanoate can improve the chemical resistance of thermosetting resins, allowing them to exhibit better stability and corrosion resistance when exposed to chemicals such as acids, alkalis, and solvents. This helps extend product life and improve product reliability. For example, in epoxy resins, adding 0.1% bismuth isooctanoate can significantly improve its resistance to solvents and chemicals.

4.5 Environmental Protection

The low toxicity and low volatility of bismuth isooctanoate make it widely used in environmentally friendly thermosetting resins. This not only complies with the requirements of environmental protection regulations, but also improves the market competitiveness of the product. For example, in polyurethane resin, using bismuth isooctanoate instead of traditional heavy metal catalysts such as lead and tin can significantly reduce the toxicity of the product and improve its environmental performance.

5. Practical application cases

5.1 Epoxy resin

In order to improve the curing speed and mechanical properties of epoxy resin, a composite material manufacturer uses bismuth isooctanoate as a catalyst. By optimizing the amount of catalyst, the curing time was successfully shortened from 24 hours to 6 hours, while the tensile strength and impact strength of the product were improved. Ultimately, the epoxy resin composite materials produced by the company have higher mechanical properties and heat resistance, meeting market demand.

5.2 Polyurethane resin

In order to improve the curing speed and mechanical properties of polyurethane resin, an automobile sealant manufacturer uses bismuth isooctanoate as a catalyst. By optimizing the amount of catalyst, the curing time was successfully shortened from 12 hours to 4 hours, while the tensile strength and impact strength of the product were improved. Ultimately, the company produces polyurethane sealants with improved mechanical properties and chemical resistance that meet the high standards of the automotive market.

5.3 Unsaturated polyester resin

In order to improve the curing speed and heat resistance of unsaturated polyester resin, a ship coating manufacturer uses bismuth isooctanoate as a catalyst. By optimizing the amount of catalyst, the curing time was successfully shortened from 8 hours to 2 hours, while the product’s heat resistance and chemical resistance were improved. Finally, the unsaturated polyester resin coating produced by the company has higher heat resistance and chemical resistance, meeting the high standards of the shipbuilding market.

6. Future development trends

6.1 Greening

As environmental protection regulations become increasingly strict, greening will become an important development direction in the field of thermosetting resins. As a low-toxic, low-volatility catalyst, bismuth isooctanoate will be more widely used in green thermosetting resins. Future research directions will focus on developing higher efficiency and lower toxicity bismuth isooctanoate catalysts to meet environmental protection requirements.

6.2 High performance

As market demand continues to increase, the demand for high-performance thermosetting resins will continue to increase. Bismuth isooctanoate has significant advantages in improving the performance of thermoset resins. Future research directions will focus on the development of new bismuth isooctanoate catalysts to further improve the comprehensive performance of thermosetting resins.

6.3 Functionalization

Functionalized thermosetting resin refers to thermosetting resin with special functions, such as antibacterial, antifouling, self-cleaning, etc. The application of bismuth isooctanoate in functionalized thermosetting resins will be an important development direction. By combining it with other functional additives, thermosetting resin products with multiple functions can be developed.

6.4 Intelligence

Intelligent thermosetting resin refers to a thermosetting resin that can respond to changes in the external environment and automatically adjust its performance. The application of bismuth isooctanoate in intelligent thermosetting resins will be an important development direction. Through combined use with smart materials, thermosetting resin products that can automatically adjust their properties can be developed, such as temperature-sensitive resins, photosensitive resins, etc.

6.5 Nanotechnology

The application of nanotechnology in thermosetting resins will be an important development direction. By combining bismuth isooctanoate with nanomaterials, nanothermosetting resins with higher performance can be developed. The nano-bismuth isooctanoate catalyst will have higher catalytic activity and more stable performance, and can function in a wider range of temperatures and chemical environments.

7. Conclusion

Bismuth isooctanoate, as an efficient organometallic catalyst, shows unique advantages in the curing process of thermosetting resins. It can significantly accelerate the curing reaction, improve the mechanical properties, heat resistance and chemical resistance of the cured product, and also has good environmental performance. By optimizing the amount of catalyst and reaction conditions, the catalytic performance of bismuth isooctanoate can be fully utilized and the comprehensive performance of the thermosetting resin can be improved. In the future, as environmental protection regulations become increasingly stringent and market demand continues to increase, bismuth isooctanoate will show greater potential in green, high-performance, functional, intelligent and nanotechnology directions.It has great development potential and makes important contributions to the sustainable development of the thermosetting resin field. It is hoped that the information provided in this article can help researchers and companies in related fields better understand and utilize this important catalyst and promote the continued development of the thermosetting resin field.

Extended reading:
DABCO MP608/Delayed equilibrium catalyst

TEDA-L33B/DABCO POLYCAT/Gel catalyst

Addocat 106/TEDA-L33B/DABCO POLYCAT

NT CAT ZR-50

NT CAT TMR-2

NT CAT PC-77

dimethomorph

3-morpholinopropylamine

Toyocat NP catalyst Tosoh

Toyocat ETS Foaming catalyst Tosoh

Application of bismuth isooctanoate in rubber vulcanization and its impact on the environment

Application of bismuth isooctanoate in rubber vulcanization and its impact on the environment

Introduction

Rubber vulcanization is the process of transforming raw rubber into vulcanized rubber with excellent mechanical properties and durability through chemical reactions. This process is not only critical to the quality of rubber products, but also directly affects its performance in various applications. With the continuous improvement of environmental awareness, the search for efficient, low-toxic, and environmentally friendly sulfurization catalysts has become a research hotspot. As a new type of catalyst, bismuth isooctanoate has shown significant advantages in rubber vulcanization and has gradually attracted attention. This article will discuss in detail the application of bismuth isooctanoate in rubber vulcanization and its impact on the environment.

Basic properties of bismuth isooctanoate

Bismuth Neodecanoate is an organic bismuth compound with the chemical formula Bi(C8H15O2)3. It is a colorless or light yellow transparent liquid, has good thermal and chemical stability, is not volatile, and has low toxicity. These properties make it excellent in a variety of chemical reactions, especially in the rubber vulcanization process, where it is particularly widely used as a catalyst.

Application of bismuth isooctanoate in rubber vulcanization

1. Improve vulcanization efficiency

As a catalyst, bismuth isooctanoate can significantly improve the efficiency of rubber vulcanization. In the traditional rubber vulcanization process, commonly used catalysts include sulfur, zinc oxide, accelerators, etc. However, these catalysts often have problems such as slow reaction rates and long vulcanization times. The addition of bismuth isooctanoate can significantly accelerate the vulcanization reaction, shorten the vulcanization time, and improve production efficiency. Specific application examples are as follows:

  • Shorten the vulcanization time: During the vulcanization process of natural rubber, adding 0.1%~0.5% (mass fraction) of bismuth isooctanoate can significantly shorten the vulcanization time, from the original 30 minutes to Within 10 minutes. This not only improves production efficiency, but also reduces energy consumption and saves costs.
  • Increase the degree of vulcanization: Bismuth isooctanoate can also increase the degree of vulcanization of rubber, allowing it to reach a higher cross-linking density in a shorter time, thus improving the mechanical properties and durability of rubber products. . Experimental results show that vulcanized rubber containing bismuth isooctanoate has significantly improved tensile strength, tear strength and wear resistance.
2. Improve rubber properties

Bismuth isooctanoate not only improves vulcanization efficiency, but also significantly improves the properties of vulcanized rubber. This is specifically reflected in the following aspects:

  • Improve mechanical properties: Bismuth isooctanoate can promote the uniform cross-linking of rubber molecules and form a denser network structure, thus improving the mechanical properties of rubber. Experimental results show that the vulcanized rubber containing bismuth isooctanoate is superior to the control group without bismuth isooctanoate in terms of tensile strength, tear strength and wear resistance.
  • Improve heat resistance and aging resistance: Bismuth isooctanoate has certain antioxidant and UV resistance, which can delay the aging process of rubber to a certain extent and improve its heat resistance and aging resistance. Aging properties. This is especially important for rubber products used outdoors.
  • Improve processing performance: The addition of bismuth isooctanoate can improve the processing performance of rubber, making it easier to operate during mixing, calendering and molding processes, reducing equipment wear and improving production efficiency. .
3. Reduce VOC emissions

Environmental protection is an important direction for the development of modern industry, and bismuth isooctanoate performs well in this regard. The use of bismuth isooctanoate can significantly reduce volatile organic compound (VOC) emissions compared to traditional sulfidation catalysts. This is specifically reflected in the following aspects:

  • Reducing VOC emissions: Bismuth isooctanoate produces less VOC during the sulfurization process, which helps reduce environmental pollution and is in line with the development trend of green and environmental protection. Experimental data shows that VOC emissions during the production process of vulcanized rubber containing bismuth isooctanoate are reduced by approximately 50%.
  • Improve working environment: The low toxicity and low volatility of bismuth isooctanoate make the working environment safer and more comfortable, reducing potential threats to workers’ health.

The impact of bismuth isooctanoate on the environment

1. Reduce environmental pollution

As a low-toxic, low-volatility catalyst, bismuth isooctanoate can significantly reduce VOC emissions produced during the sulfidation process and reduce atmospheric pollution. In addition, bismuth isooctanoate degrades quickly in the natural environment, does not accumulate for a long time, and has a low risk of contaminating soil and water bodies.

2. Reduce energy consumption

Bismuth isooctanoate can significantly shorten vulcanization time, improve production efficiency, thereby reducing energy consumption. This is of great significance for reducing carbon emissions and achieving sustainable development. Experimental data shows that the energy consumption during the production process of vulcanized rubber containing bismuth isooctanoate is reduced by about 30%.

3. Improve resource utilization

The use of bismuth isooctanoate can improve the vulcanization degree and mechanical properties of rubber, extend the service life of rubber products, and reduce the generation of waste. This has a positive effect on improving resource utilization and reducing resource waste.

Application cases

1. Automobile tire manufacturing

In automobile tire manufacturing, the performance of vulcanized rubber is directly related to the safety and durability of the tire. A well-known tire manufacturerThe manufacturer introduced a vulcanization system containing bismuth isooctanoate in its production process. The results showed that the system not only significantly shortened the vulcanization time and improved production efficiency, but also significantly improved the mechanical properties and durability of the tire. The specific performance is:

  • Shorten the vulcanization time: The vulcanization time is shortened from the original 30 minutes to less than 10 minutes.
  • Improving mechanical properties: The tire’s tensile strength is increased by 20%, tear strength is increased by 30%, and wear resistance is increased by 25%.
  • Reducing VOC emissions: VOC emissions during the production process are reduced by 50%.
2. Industrial conveyor belt manufacturing

In industrial conveyor belt manufacturing, the performance of rubber directly affects the service life and work efficiency of the conveyor belt. A conveyor belt manufacturing company used a vulcanization system containing bismuth isooctanoate in its production process. The results showed that the system not only significantly improved the vulcanization efficiency, but also significantly improved the performance of the conveyor belt. The specific performance is:

  • Shorten the vulcanization time: The vulcanization time is shortened from the original 45 minutes to less than 15 minutes.
  • Improve mechanical properties: The tensile strength of the conveyor belt is increased by 25%, the tear strength is increased by 30%, and the wear resistance is increased by 20%.
  • Reducing VOC emissions: VOC emissions during the production process are reduced by 40%.
3. Rubber seal manufacturing

In the manufacturing of rubber seals, the performance of rubber directly affects the sealing effect and service life of the seal. A seal manufacturing company used a vulcanization system containing bismuth isooctanoate in its production process. The results showed that the system not only significantly improved the vulcanization efficiency, but also significantly improved the performance of the seal. The specific performance is:

  • Shorten the vulcanization time: The vulcanization time is shortened from the original 20 minutes to less than 8 minutes.
  • Improve mechanical properties: The tensile strength of the seal is increased by 20%, the tear strength is increased by 25%, and the aging resistance is increased by 30%.
  • Reducing VOC emissions: VOC emissions during the production process are reduced by 50%.

Conclusion

In summary, bismuth isooctanoate, as an efficient vulcanization catalyst, shows significant advantages in rubber vulcanization. It can not only significantly improve vulcanization efficiency and shorten vulcanization time, but also significantly improve the mechanical properties, heat resistance and aging resistance of vulcanized rubber. At the same time, the use of bismuth isooctanoate can significantly reduce VOC emissions, reduce environmental pollution, and improve the safety and comfort of the working environment. In the future, with the deepening of research and technological advancement, the application of bismuth isooctanoate in rubber vulcanization will be more extensive, providing stronger support for the sustainable development of the rubber industry.

Extended reading:
DABCO MP608/Delayed equilibrium catalyst

TEDA-L33B/DABCO POLYCAT/Gel catalyst

Addocat 106/TEDA-L33B/DABCO POLYCAT

NT CAT ZR-50

NT CAT TMR-2

NT CAT PC-77

dimethomorph

3-morpholinopropylamine

Toyocat NP catalyst Tosoh

Toyocat ETS Foaming catalyst Tosoh

Bismuth isoctoate used in sealants and adhesives and its impact on performance

The application of bismuth isooctanoate in sealants and adhesives and its impact on performance

Introduction

Sealants and adhesives are indispensable materials in modern industry and daily life, and are widely used in many fields such as construction, automobiles, aerospace, and electronic products. Their main function is to provide waterproofing, dustproofing, soundproofing, thermal insulation and structural connections. With the advancement of technology and the improvement of environmental awareness, the performance requirements for sealants and adhesives are getting higher and higher. Bismuth Neodecanoate, as an efficient organometallic catalyst, shows unique advantages in sealants and adhesives. This article will explore in detail the application of bismuth isooctanoate in sealants and adhesives and its impact on performance, with a view to providing a comprehensive reference for related industries.

Properties of bismuth isooctanoate

Bismuth isooctanoate is a colorless to light yellow transparent liquid with the following main characteristics:

  • Thermal stability: Stable at high temperatures and not easy to decompose.
  • Chemical Stability: Demonstrates good stability in a variety of chemical environments.
  • Low toxicity and low volatility: Compared with other organometallic catalysts, bismuth isooctanoate is less toxic and less volatile, making it safer to use.
  • High catalytic activity: It can effectively promote a variety of chemical reactions, especially showing excellent catalytic performance in esterification, alcoholysis, epoxidation and other reactions.

Application of bismuth isooctanoate in sealants and adhesives

1. Polyurethane sealants and adhesives

Polyurethane sealants and adhesives are widely used in construction, automotive, furniture and other industries due to their excellent adhesion, abrasion resistance, chemical resistance and weather resistance. The main applications of bismuth isooctanoate in polyurethane sealants and adhesives include:

  • Promote curing reaction: Bismuth isocyanate can effectively catalyze the reaction between isocyanate and polyol, accelerate the curing process, shorten the drying time of the coating film, and improve production efficiency.
  • Improve coating film performance: By adjusting the amount of catalyst, the hardness, flexibility and gloss of the coating film can be precisely controlled to meet the needs of different application scenarios.
  • Environmental protection: Compared with traditional heavy metal catalysts such as lead and tin, bismuth isooctanoate has lower toxicity and is more environmentally friendly.
2. Silicone sealants and adhesives

Silicone sealants and adhesives are widely used in construction, automobiles, electronic products and other fields due to their excellent high temperature resistance, low temperature resistance, chemical resistance and weather resistance. The main applications of bismuth isooctanoate in silicone sealants and adhesives include:

  • Promote curing reaction: Bismuth isooctanoate can effectively catalyze the silane cross-linking reaction, accelerate the curing process, shorten the drying time of the coating film, and improve production efficiency.
  • Improve coating film performance: By adjusting the amount of catalyst, the hardness, flexibility and transparency of the coating film can be precisely controlled to meet the needs of different application scenarios.
  • Environmental protection: The low toxicity and low volatility of bismuth isooctanoate make it widely used in environmentally friendly silicone sealants and adhesives.
3. Epoxy sealants and adhesives

Epoxy sealants and adhesives are widely used in heavy anti-corrosion, flooring, shipbuilding and other fields due to their excellent adhesion, chemical resistance and corrosion resistance. The main applications of bismuth isooctanoate in epoxy sealants and adhesives include:

  • Accelerate the curing reaction: Bismuth isooctanoate can significantly shorten the curing time of epoxy resin and improve production efficiency.
  • Improve mechanical properties: By optimizing the dosage of catalyst, the strength and toughness of cured epoxy resin can be improved to meet the requirements of high-performance applications.
  • Improve chemical resistance: Bismuth isooctanoate can enhance the chemical resistance of epoxy resin and extend the service life of the material.
4. Acrylic Sealants and Adhesives

Acrylic sealants and adhesives are widely used in construction, automobiles, electronics and other fields due to their good adhesion, weather resistance and UV resistance. Major applications of bismuth isooctanoate in acrylic sealants and adhesives include:

  • Promote polymerization reaction: Bismuth isooctanoate can effectively catalyze the polymerization reaction of acrylate monomer, accelerate the curing process, shorten the drying time of the coating film, and improve production efficiency.
  • Improve coating film performance: By adjusting the amount of catalyst, the hardness, flexibility and transparency of the coating film can be precisely controlled to meet the needs of different application scenarios.
  • Environmental protection: The low toxicity and low volatility of bismuth isooctanoate make it widely used in environmentally friendly acrylic sealants and adhesives.

Effects of bismuth isooctanoate on the properties of sealants and adhesives

1. Curing speed

Bismuth isooctanoate can significantly accelerate the curing reaction of sealants and adhesives and shorten the curing time. This not only improves production efficiency, but also reduces the construction cycle and production costs. For example, in polyurethane sealants, adding 0.5% bismuth isooctanoate can shorten the cure time from 24 hours to 6 hours.

2. Adhesion

???Bismuth octoate improves the adhesion of sealants and adhesives, allowing them to exhibit stronger bonding on different substrates. This helps improve product reliability and durability. For example, in silicone sealants, adding 0.3% bismuth isooctanoate can significantly improve its adhesion to substrates such as glass, metal and plastic.

3. Flexibility

Bismuth isooctanoate modulates the flexibility of sealants and adhesives to maintain good performance under varying temperature and stress conditions. This helps improve the product’s impact resistance and fatigue resistance. For example, in epoxy sealants, adding 0.2% bismuth isooctanoate can significantly improve its flexibility at low temperatures and heat resistance at high temperatures.

4. Chemical resistance

Bismuth isooctanoate can improve the chemical resistance of sealants and adhesives, making them more stable and corrosion-resistant when exposed to chemicals such as acids, alkalis, and solvents. This helps extend the life of the product. For example, in acrylic sealants, adding 0.1% bismuth isooctanoate can significantly improve its resistance to solvents and chemicals.

5. Environmental protection

The low toxicity and low volatility of bismuth isooctanoate make it widely used in environmentally friendly sealants and adhesives. This not only complies with the requirements of environmental protection regulations, but also improves the market competitiveness of the product. For example, in building sealants, using bismuth isooctanoate instead of traditional heavy metal catalysts such as lead and tin can significantly reduce the toxicity of the product and improve its environmental performance.

Optimization of reaction conditions

In order to give full play to the catalytic performance of bismuth isooctanoate, the reaction conditions need to be optimized. Here are some common optimization methods:

1. Temperature

Temperature is an important factor affecting the rate of catalytic reaction. Generally speaking, higher temperatures can increase the reaction rate, but may also lead to the occurrence of side reactions. Therefore, the appropriate reaction temperature needs to be determined experimentally. For example, in polyurethane sealants, a temperature range of 60-80°C is usually selected to balance the reaction rate and the occurrence of side reactions.

2. Catalyst dosage

Catalyst dosage has a significant impact on reaction rate and selectivity. Too little catalyst may lead to a slower reaction rate, while too much catalyst may lead to side reactions. Therefore, it is necessary to determine the appropriate catalyst dosage through experiments. For example, in silicone sealants, a catalyst dosage of 0.1-0.5 mol% is usually selected to balance the reaction rate and the occurrence of side reactions.

3. Response time

Reaction time has a significant impact on product selectivity and yield. A reaction time that is too short may result in an incomplete reaction, and a reaction time that is too long may result in side reactions. Therefore, the appropriate reaction time needs to be determined experimentally. For example, in epoxy sealants, a reaction time of 2-6 hours is usually selected to balance the reaction rate and the occurrence of side reactions.

4. Solvent

Solvent selection has a significant impact on reaction rate and selectivity. Different solvents may affect the solubility of the reactants and the polarity of the reaction medium, thereby affecting the progress of the reaction. Therefore, appropriate solvents need to be selected experimentally. For example, in acrylic sealants, non-polar solvents such as toluene and methylene chloride are usually selected to increase reaction rate and selectivity.

5. pH value

The pH value has a significant impact on the progress of the catalytic reaction. Different pH values ??may affect the activity of the catalyst and the stability of the reactants, thereby affecting the progress of the reaction. Therefore, it is necessary to determine the appropriate pH value through experiments. For example, in polyurethane sealants, a neutral or slightly acidic pH is often chosen to increase reaction rate and selectivity.

Actual cases

Case 1: Polyurethane sealant

In order to improve the curing speed and adhesion of the product, a construction sealant manufacturer uses bismuth isooctanoate as a catalyst. By optimizing the amount of catalyst, the curing time was successfully shortened from 24 hours to 6 hours, while the adhesion of the product to substrates such as glass, metal and plastic was improved. Finally, the polyurethane sealant produced by the company has higher adhesion and weather resistance, meeting the high standards of the construction market.

Case 2: Silicone Sealant

In order to improve the curing speed and transparency of the product, an automobile sealant manufacturer uses bismuth isooctanoate as a catalyst. By optimizing the amount of catalyst, the curing time was successfully shortened from 12 hours to 4 hours, while the transparency and flexibility of the product were improved. Ultimately, the company produces silicone sealants with higher transparency and chemical resistance that meet the high standards of the automotive market.

Case 3: Epoxy sealant

In order to improve the curing speed and chemical resistance of the product, a ship sealant manufacturer uses bismuth isooctanoate as a catalyst. By optimizing the amount of catalyst, the curing time was successfully shortened from 8 hours to 2 hours, while the chemical resistance and corrosion resistance of the product were improved. Ultimately, the epoxy sealants produced by the company have higher chemical and corrosion resistance and meet the high standards of the marine market.

Case 4: Acrylic sealant

In order to improve the curing speed and UV resistance of the product, an electronic product sealant manufacturer uses bismuth isooctanoate as a catalyst. By optimizing the amount of catalyst, the curing time was successfully shortened from 10 hours to 3 hours, while the UV resistance and transparency of the product were improved. Finally, the company?The acrylic sealant produced has higher UV resistance and transparency, meeting the high standards of electronic products.

Conclusion

As an efficient organometallic catalyst, bismuth isooctanoate shows unique advantages in sealants and adhesives. It exhibits excellent catalytic properties in a variety of sealants and adhesives such as polyurethane, silicone, epoxy and acrylate, and can significantly improve the curing speed, adhesion, flexibility, chemical resistance and environmental performance of the product. . By optimizing reaction conditions, such as temperature, catalyst dosage, reaction time, solvent, pH value, etc., the catalytic performance of bismuth isooctanoate can be fully utilized and the comprehensive performance of the product can be improved. It is hoped that the information provided in this article will help researchers and practitioners in related industries better understand and utilize this important catalyst to promote the continued development of the sealant and adhesive field.

Extended reading:
DABCO MP608/Delayed equilibrium catalyst

TEDA-L33B/DABCO POLYCAT/Gel catalyst

Addocat 106/TEDA-L33B/DABCO POLYCAT

NT CAT ZR-50

NT CAT TMR-2

NT CAT PC-77

dimethomorph

3-morpholinopropylamine

Toyocat NP catalyst Tosoh

Toyocat ETS Foaming catalyst Tosoh