diphenylcarbamoyl chloride

Diphenylcarbamoyl chloride structural formula

Structural formula

Business number 01T9
Molecular formula C13H10ClNO
Molecular weight 231.68
label

Diphenylcarbamocarbon chloride,

dimethylcarbamoyl chloride,

N,N-Diphenylchloroformamide,

diphenylcarbamide chloride,

diphenylcarbamoyl chloride,

Chloroformic acid diphenylamide,

DPC-Cl

Numbering system

CAS number:83-01-2

MDL number:MFCD00000633

EINECS number:201-450-2

RTECS number:EY5065000

BRN number:515312

PubChem number:24866819

Physical property data

1. Appearance: white powder

2. Density (g/mL, 25/4?): Undetermined

3. Relative vapor density (g/mL, air =1): Uncertain

4. Melting point (ºC): 85

5. Boiling point (ºC, normal pressure): Uncertain

6. Boiling point (ºC, 5.2kPa): Uncertain

7. Refractive index: Uncertain

8. Flash point (ºC): Uncertain

9. Ratio Optical rotation (º): Uncertain

10. Autoignition point or ignition temperature (ºC): Uncertain

11. Vapor pressure (kPa, 25ºC): Uncertain

p>

12. Saturated vapor pressure (kPa, 60ºC): Uncertain

13. Heat of combustion (KJ/mol): Uncertain

14. Critical temperature (ºC ): Uncertain

15. Critical pressure (KPa): Uncertain

16. Log value of oil-water (octanol/water) partition coefficient: Uncertain

17. Upper explosion limit (%, V/V): Uncertain

18. Lower explosion limit (%, V/V): Uncertain

19. Solubility: Dissolved in most common solvents.

Toxicological data

None yet

Ecological data

None yet

Molecular structure data

1. Molar refractive index: 65.21

2. Molar volume (cm3/mol): 182.5

3. Isotonic specific volume (90.2K): 487.2

4. Surface tension (dyne/cm): 50.8

5. Polarizability (10-24cm3): 25.85

Compute chemical data

1. Hydrophobic parameter calculation reference value (XlogP): 3.8

2. Number of hydrogen bond donors: 0

3. Number of hydrogen bond acceptors: 1

4. Number of rotatable chemical bonds: 2

5. Topological molecular polar surface area (TPSA): 20.3

6. Number of heavy atoms: 16

7. Surface charge: 0

8. Complexity: 214

9. Number of isotope atoms: 0

10. Determine the number of atomic stereocenters : 0

11. Uncertain number of atomic stereocenters: 0

12. Determined number of chemical bond stereocenters: 0

13. Uncertain chemical bond formation Number of structural centers:0

14. Number of covalent bond units: 1

Properties and stability

It is hygroscopic and should be kept away from strong alkalis and strong oxidants; it is corrosive; unlike dimethylamino, diethylamino, and methylphenylcarbamoyl chloride, DPC-Cl does not have carcinogenic properties.

Storage method

Should be sealed and stored in a cool, dry place

Synthesis method

None yet

Purpose

1. Phenolic reagents. Organic Synthesis.

2. Diphenylcarbamoyl chloride (DPC-Cl) is a commonly used acylating reagent that can be used for Friedel-Crafts acylation; it can acylate amines, amino acids, thiols, phenols, and carboxylic acids Salt, etc.; can be used as a protective group during oligonucleotide synthesis, and the protective group can be removed under the action of concentrated ammonia-methanol or NaOH-methyl(ethanol) alcohol.

Introduction of carboxyl group Under the catalysis of AlCl3, DPC-Cl can introduce a carboxyl group on the aromatic ring. Alkyl or alkoxy substituted aromatic rings are susceptible to reaction. The product diphenylamide is hydrolyzed with alkali and then acidified to obtain carboxylic acid (formula 1)[1].

Reaction with amino groups DPC-Cl easily reacts with primary (formula 2) [2], secondary fatty amine (formula 3) [3] etc. [ 4~7].

Reaction with sulfhydryl group Under alkaline conditions (such as NaHCO3), DPC-Cl can react with thiols in ethanol solution (Formula 4)[8].

Used as oligomeric Protective groups during nucleotide synthesisWhen synthesizing oligonucleotides, the bases of guanine nucleosides are prone to side reactions and need to be protected. DPC-Cl can protect the enol isoforms of guanine bases. The conformation is protected by acylation. This method plays an important role in the synthesis of nucleoside compounds with guanine bases and those similar to guanine bases [9~12] ( Formula 5).

With double bonds Reaction of alcohol compounds DPC-Cl can undergo esterification reaction with alcohol compounds containing double bonds (Formula 6)[13].

With azide Reaction of sodium DPC-Cl can react with sodium azide to generate the corresponding azide compound (Formula 7)[14].

extended-reading:https://www.bdmaee.net/potassium-neodecanoate-2/
extended-reading:https://www.bdmaee.net/n-dimethylaminopropyldiisopropanolamine/
extended-reading:https://www.cyclohexylamine.net/dibutyltin-oxide-cas-818-08-6/
extended-reading:https://www.bdmaee.net/polyurethane-reaction-inhibitor-y2300-polyurethane-reaction-inhibitor-reaction-inhibitor-y2300/
extended-reading:https://www.bdmaee.net/dabco-k2097-catalyst-cas127-08-2-evonik-germany/
extended-reading:https://www.newtopchem.com/archives/44959
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/TMR-4–TMR-4-trimer-catalyst-TMR-4.pdf
extended-reading:https://www.bdmaee.net/dimethyltin-oxide/
extended-reading:https://www.bdmaee.net/n-dimethylaminopropyl-diisopropanolamine-cas-63469-23-8-pc-cat-np10/
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/33-11.jpg

Cysteine ??hydrochloride

Cysteine ??hydrochloride structural formula

Structural formula

Business number 015R
Molecular formula C3H8ClNO2S
Molecular weight 157.62
label

L-cysteine ??hydrochloride,

L-cysteine ??hydrochloride hydrate,

Alpha-amino-beta-mercaptopropionic acid hydrochloride,

L-cysteine ??hydrochloride,

fu amino acid,

L-mercaptoalanine hydrochloride anhydrous,

L-Cysteine ??hydrochloride,

Cysteine ??HCl,

2-Amino-3-mercaptopropanoic acid,

3-Mercaptoalanine,

Biochemical reagents

Numbering system

CAS number:52-89-1

MDL number:MFCD00064553

EINECS number:200-157-7

RTECS number:HA2275000

BRN number:3560277

PubChem number:24892395

Physical property data

1. Character: White crystal. Hygroscopic.

2. Density (g/mL, 25/4?): Not determined

3. Relative vapor density (g/mL, air=1): Not determined Determined

4. Melting point (ºC): 175~178? (decomposition)

5. Boiling point (ºC, normal pressure): Undetermined

6. Boiling point (ºC, 13.33kpa):

7. Refractive index: Not determined

8. Flash point (ºC): Not determined

9. Specific rotation Degree (º,): 5.0° (5mol/L, in hydrochloric acid)

10. Autoignition point or ignition temperature (ºC): Undetermined

11. Vapor pressure (kPa , 25ºC): Undetermined

12. Saturated vapor pressure (kPa, 60ºC): Undetermined

13. Heat of combustion (KJ/mol): Undetermined

14. Critical temperature (ºC): Undetermined

15. Critical pressure (KPa): Undetermined

16. Log value of oil-water (octanol/water) partition coefficient : Undetermined

17. Explosion upper limit (%, V/V): Undetermined

18. Explosion lower limit (%, V/V): Undetermined

19. Solubility: Soluble in water, ethanol and acetone. Aqueous solutions are acidic.

Toxicological data

1. Acute toxicity: mouse abdominal LC50: 1250 mg/kg; mouse intravenous LC50: 771 mg/kg; mouse LC50: 3 mg/kg; 2. Mutagenicity: mutation microorganismsTEST system: bacteria – Salmonella typhimurium: 20mg/plate; Cytogenetic analysisTEST system: rodents?-Hamster fibroblasts: 2mg/L

Ecological data

None yet

Molecular structure data

1. Molar refractive index: 28.90

2. Molar volume (cm3/mol): 90.7

3. Isotonic specific volume (90.2K ): 251.5

4. Surface tension (dyne/cm): 58.9

5. Polarizability (10-24cm3): 11.45

Compute chemical data

1. Reference value for hydrophobic parameter calculation (XlogP): None

2. Number of hydrogen bond donors: 4

3. Number of hydrogen bond acceptors: 4

4. Number of rotatable chemical bonds: 2

5. Number of tautomers: none

6. Topological molecule polar surface area 64.3

7. Number of heavy atoms: 8

8. Surface charge: 0

9. Complexity: 75.3

10. Number of isotope atoms: 0

11. Determine the number of atomic stereocenters: 1

12. Uncertain number of atomic stereocenters: 0

13. Determine the number of chemical bond stereocenters: 0

14. Number of uncertain chemical bond stereocenters: 0

15. Number of covalent bond units: 2

Properties and stability

Hygroscopic. Oxidizes and decomposes slowly in air. Aqueous solutions are acidic.

Storage method

Should be sealed and stored in a cool, dry place away from light.

Synthesis method

1. Dissolve cystine in dilute hydrochloric acid, filter and add tin particles to heat and reflux. Dilute the reducing solution with water, remove the remaining tin particles, saturate with hydrogen sulfide, filter, wash the filter residue with a small amount of water, combine the washing liquid and filtrate, concentrate under reduced pressure, cool and crystallize, and dry to obtain L-cysteine ??hydrochloride.

2. Hydrolyzed by ?-keratin contained in hair Cystine can be obtained, and then reduced to cysteine ??through chemical reduction or electrolysis, and hydrochloric acid is added to form a salt.

Purpose

1. Used for biochemical research. Determination of calcium and magnesium in steel raw materials. Reducing agent for determination of hemolysin. Growth culture and enumeration of anaerobic bacteria.

2.Used in biochemistry Research. Determination of calcium and magnesium in steel raw materials. Reducing agent for determination of hemolysin. It is used to treat acrylonitrile and aromatic poisoning, prevent radiation damage, treat bronchitis and reduce phlegm. It is also used in cosmetics to prevent aging, and as a food additive to promote fermentation and maintain umami taste.

3.Used as analytical reagents, As a masking agent, it is used to measure calcium and magnesium. It can be used as a reducing agent for biochemical research, such as hemolysin determination. Also used for the cultivation of anaerobic bacteria.

extended-reading:https://www.bdmaee.net/niax-b-9-balanced-tertiary-amine-catalyst-momentive/
extended-reading:https://www.cyclohexylamine.net/n-methyl-methylcyclohexylamine/
extended-reading:https://www.newtopchem.com/archives/45105
extended-reading:https://www.morpholine.org/category/morpholine/n-methylmorpholine/
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/Dioctyl-tin-oxide-CAS870-08-6-FASCAT-8201-catalyst.pdf
extended-reading:https://www.newtopchem.com/archives/44797
extended-reading:https://www.bdmaee.net/fascat9201-catalyst-dibutyl-tin-oxide-fascat9201/
extended-reading:https://www.bdmaee.net/fascat-9102-catalyst/
extended-reading:https://www.newtopchem.com/archives/39611
extended-reading:https://www.cyclohexylamine.net/bis2dimethylaminoethylether-22%e2%80%b2-oxybisnn-dimethylethylamine/

2,5-Dichloroaniline

2,5-dichloroaniline structural formula

Structural formula

Business number 029Y
Molecular formula C6H5Cl2N
Molecular weight 162
label

Benzene red purple GG salt,

Solid Scarlet GG Salt,

Fast Scarlet GG Salt,

Aromatic nitrogen-containing compounds and their derivatives

Numbering system

CAS number:95-82-9

MDL number:MFCD00007667

EINECS number:202-455-2

RTECS number:BX2610000

BRN number:1447438

PubChem number:24846562

Physical property data

1. Properties: light brown to amber needle-like crystals. [1]

2. Melting point (?): 49~51[2]

3. Boiling point (?) :251[3]

4. Relative density (water = 1): 1.54[4]

5. Relative Vapor density (air = 1): 5.6[5]

6. Octanol/water partition coefficient: 2.75[6]

7. Solubility: Slightly soluble in water, soluble in ethanol, ether, benzene, carbon disulfide, and dilute hydrochloric acid. [7]

Toxicological data

1. Acute toxicity:

Rat oral LD50: 1600mg/kg; rat intraperitoneal LD50: 400mg/kg; mouse oral LD50: 1600mg/kg; mouse intraperitoneal LD50 : 400mg/kg; mouse intravenous LD50: 56mg/kg; rabbit oral LD50: 3750mg/kg; guinea pig oral LD50: 3750mg/kg;

2. Other multiple dose toxicity: rat oral TDLo: 27300mg/kg/13W-I;

3. Acute toxicity[8] LD50: 1600mg/kg (rat oral)

4. Irritation No information available

Ecological data

1. Ecotoxicity No data yet

2. Biodegradability[9] Improved OECD screening test , the degradation is less than 25% in 28 days; in the modified AFNOR test, the degradation is less than 7% in 28 days.

3. Non-biodegradability[10] In the air, when the hydroxyl radical concentration is 5.00×105 pcs/cm3, the degradation half-life is 17h (theoretical).

4. Bioconcentration[11] BCF: 35 (theoretical)

Molecular structure data

1. Molar refractive index: 40.27

2. Molar volume (cm3/mol): 115.6

3. Isotonic specific volume (90.2K ): 304.8

4. Surface tension (dyne/cm): 48.3

5. Polarizability (10-24cm3): 15.96

Compute chemical data

1. Reference value for hydrophobic parameter calculation (XlogP): None

2. Number of hydrogen bond donors: 1

3. Number of hydrogen bond acceptors: 1

4. Number of rotatable chemical bonds: 0

5. Number of tautomers: none

6. Topological molecule polar surface area 26

7. Number of heavy atoms: 9

8. Surface charge: 0

9. Complexity: 97.1

10. Number of isotope atoms: 0

11. Determine the number of atomic stereocenters: 0

12. Uncertain number of atomic stereocenters: 0

13. Determine the number of chemical bond stereocenters: 0

14. Uncertain chemical bond configurationNumber of centers: 0

15. Number of covalent bond units: 1

Properties and stability

1. Stability[12] Stable

2. Incompatible substances[13] Acids, acid chlorides, acid anhydrides, strong oxidants

3. Conditions to avoid contact[14] Heating

4. Polymerization hazard[15] No polymerization

5. Decomposition products[16] Hydrogen chloride

Storage method

Storage Precautions[17] Store in a cool, ventilated warehouse. Keep away from fire and heat sources. The packaging is sealed. They should be stored separately from oxidants, acids, and food chemicals, and avoid mixed storage. Equipped with the appropriate variety and quantity of fire equipment. Suitable materials should be available in the storage area to contain spills.

Synthesis method

1. The iron powder reduction method uses 2,5-dichloronitrobenzene as raw material, reduces it with iron powder in dilute acid medium, and then neutralizes, separates and refines the finished product.

2. Hydrogenation reduction method 2,5-Dichloronitrobenzene is used as the raw material, ethanol is used as the medium and catalyst, and the hydrogenation reaction is carried out under heating and pressure. The reaction product is separated and refined to obtain the finished product.

3. Its preparation method is: Add 2,5-dichloronitrobenzene, ethanol and platinum catalyst to the autoclave, introduce hydrogen to 3-4MPa at 85-90°C, then stop flowing the hydrogen and keep it warm. The end point will be reached when the pressure drops stably, and the material Pour it out, remove the solution and crystallize to obtain the product.

Purpose

1. Insoluble azo dyes and ice dyes. Mainly used for cotton dyeing. Coupled with chromophen AS and chromophen AS-D, it dyes bright red; coupled with chromophen AS-G, it dyes light yellow. Strong coupling force and fast coupling speed. It is also used for dyeing viscose fiber, silk and nylon for cotton printing. In addition, it is used to synthesize 2,5-dichlorophenylsuccinic acid.

2. Used as dye intermediate and used in organic synthesis. [18]

extended-reading:https://www.morpholine.org/category/morpholine/page/5398/
extended-reading:https://www.morpholine.org/trimethylhydroxyethyl-bisaminoethyl-ether/
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/FASCAT2001-catalyst-CAS301-10-0-Stannous-octoate.pdf
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/Dioctyltin-dichloride-CAS-3542-36-7-Dioctyl-tin-dichloride.pdf
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/124-2.jpg
extended-reading:https://www.bdmaee.net/wp-content/uploads/2019/10/1-4.jpg
extended-reading:https://www.newtopchem.com/archives/44236
extended-reading:https://www.newtopchem.com/archives/43976
extended-reading:https://www.morpholine.org/polyurethane-blowing-catalyst-blowing-catalyst/
extended-reading:https://www.newtopchem.com/archives/44716