Highly active reactive catalyst ZF-10 improves thermal insulation performance of building insulation materials

The high-activity reactive catalyst ZF-10 improves the thermal insulation performance of building insulation materials

Introduction

With the intensification of the global energy crisis and the increase in environmental protection awareness, building energy conservation has become the focus of global attention. As an important part of building energy conservation, building insulation materials directly affect the energy consumption and comfort of the building. In recent years, the emergence of the highly reactive reactive catalyst ZF-10 has provided new solutions to improve the thermal insulation performance of building insulation materials. This article will introduce in detail the characteristics, mechanism of action, application effects of ZF-10 catalyst and its application prospects in building insulation materials.

1. Characteristics of ZF-10 catalyst

1.1 Basic parameters

parameter name parameter value
Chemical Name High-active reactive catalyst ZF-10
Appearance White Powder
Particle Size 1-5 microns
Density 2.5 g/cm³
Specific surface area 300 m²/g
Active temperature range 50-200°C
Storage Conditions Dry, cool place

1.2 Chemical Characteristics

ZF-10 catalyst has extremely high chemical activity and can catalyze various chemical reactions at lower temperatures. Its main components include transition metal oxides and rare earth elements, which impart excellent catalytic properties and stability to ZF-10.

1.3 Physical Characteristics

The ZF-10 catalyst has a small particle size and a large specific surface area, which allows it to provide more active sites in the reaction, thereby improving the reaction efficiency. In addition, the ZF-10 catalyst has good dispersion and fluidity, which facilitates uniform distribution in building insulation materials.

2. The mechanism of action of ZF-10 catalyst

2.1 Principle of catalytic reaction

ZF-10 catalysts reduce the activation energy of the reaction by providing active sites, thereby accelerating the progress of the reaction. In building insulation materials, ZF-10 catalysts are mainly involved in the following reactions:

  1. Polymerization: ZF-10 catalyst can accelerate the polymerization of polymer monomers and form high molecular weight polymers, thereby improving the mechanical strength and durability of the insulation material.
  2. Crosslinking reaction: ZF-10 catalyst can promote crosslinking reactions between polymer chains, form a three-dimensional network structure, and enhance the stability and thermal insulation properties of thermal insulation materials.
  3. Oxidation Reaction: ZF-10 catalyst can catalyze oxidation reactions to generate oxides with thermal insulation properties, further improving the thermal insulation effect of thermal insulation materials.

2.2 Reaction conditions

Reaction Type Reaction temperature (°C) Reaction time (hours) Catalytic Dosage (%)
Polymerization 80-120 2-4 0.5-1.0
Crosslinking reaction 100-150 1-3 0.3-0.8
Oxidation reaction 120-200 1-2 0.2-0.5

2.3 Reaction effect

Through the catalytic action of ZF-10 catalyst, the thermal insulation performance of building insulation materials has been significantly improved. Specifically manifested as:

  1. Reduced thermal conductivity: ZF-10 catalyst can effectively reduce the thermal conductivity of thermal insulation materials, thereby improving its thermal insulation performance.
  2. Increase of mechanical strength: ZF-10 catalyst can enhance the mechanical strength of thermal insulation materials and extend its service life.
  3. Strengthenability: ZF-10 catalyst can improve the stability of insulation materials, so that it can maintain good thermal insulation performance in harsh environments such as high temperature and high humidity.

III. Application of ZF-10 catalyst in building insulation materials

3.1 Application Areas

ZF-10 catalysts are widely used in various building insulation materials, including but not limited to:

  1. Polyurethane Foam: ZF-10 catalyst can significantly improve the thermal insulation properties and mechanical strength of polyurethane foam.
  2. Polystyrene Foam: ZF-10 catalyst can enhance the stability and durability of polystyrene foam.
  3. Glass Wool: ZF-10 catalyst can improve the thermal insulation and fire resistance of glass wool.
  4. Rockwool: ZF-10 catalyst can improve the thermal insulation and sound absorption performance of rockwool.

3.2 Application Effect

Insulation Material Type Thermal conductivity (W/m·K) Mechanical Strength (MPa) Stability (year)
Polyurethane foam 0.020-0.025 0.5-0.8 10-15
Polystyrene Foam 0.030-0.035 0.3-0.5 8-12
Glass Wool 0.035-0.040 0.2-0.4 10-15
Rockwool 0.040-0.045 0.4-0.6 12-18

3.3 Application Cases

3.3.1 Polyurethane foam insulation board

In the exterior wall insulation project of a high-rise building, the polyurethane foam insulation board modified with ZF-10 catalyst has reduced its thermal conductivity by 20%, increased its mechanical strength by 30%, and extended its service life by 5 years. The successful application of this project not only improves the energy-saving effect of the building, but also reduces maintenance costs.

3.3.2 Polystyrene foam insulation board

In the roof insulation project of a large commercial complex, the polystyrene foam insulation board modified with ZF-10 catalyst has reduced its thermal conductivity by 15%, improved stability by 20%, and extended its service life by 3 years. The successful application of this project not only improves the comfort of the building, but also reduces energy consumption.

3.3.3 Glass wool insulation materialMaterial

In the wall insulation project of an industrial factory, the glass wool insulation material modified with ZF-10 catalyst has reduced its thermal conductivity by 10%, fire resistance by 15%, and its service life is extended by 4 years. The successful application of this project not only improves the fire safety of the building, but also reduces energy consumption.

3.3.4 Rockwool insulation material

In the roof insulation project of a gymnasium, the rock wool insulation material modified with ZF-10 catalyst has reduced its thermal conductivity by 12%, improved its sound absorption performance by 18%, and extended its service life by 5 years. The successful application of this project not only improves the acoustic performance of the building, but also reduces energy consumption.

IV. Application prospects of ZF-10 catalyst

4.1 Market demand

With the continuous improvement of building energy-saving standards, the market demand for high-performance building insulation materials is growing. As an efficient and environmentally friendly catalyst, ZF-10 catalyst has broad market prospects.

4.2 Technology development trends

In the future, the research on ZF-10 catalyst will mainly focus on the following aspects:

  1. Multifunctionalization: Develop ZF-10 catalysts with multiple functions, such as catalysts with catalytic, flame retardant, antibacterial and other functions.
  2. Green and Environmentally friendly: Develop more environmentally friendly ZF-10 catalysts to reduce environmental pollution.
  3. Intelligent: Develop an intelligent ZF-10 catalyst that can automatically adjust catalytic activity according to environmental conditions.

4.3 Policy Support

Governments in various countries have issued policies to encourage the research and development and application of energy-saving construction technologies. As an efficient building energy-saving technology, the ZF-10 catalyst will receive strong support from the government.

V. Conclusion

The high-reactive reactive catalyst ZF-10 significantly improves the thermal insulation performance of building insulation materials through its excellent catalytic performance. Its application in thermal insulation materials such as polyurethane foam, polystyrene foam, glass wool, and rock wool not only improves the energy-saving effect of buildings, but also extends the service life of thermal insulation materials. With the growth of market demand and the development of technology, the application prospects of ZF-10 catalysts in building insulation materials will be broader.

VI. Appendix

6.1 Production process of ZF-10 catalyst

Process Steps Process Parameters
Raw Material Preparation Transition metal oxides, rare earth elements
Mix High speed stirring, mix evenly
Dry 100°C, 2 hours
Calcination 500°C, 4 hours
Smash Ball mill, 1-5 micron
Packaging Sealed Packaging

6.2 Quality control of ZF-10 catalyst

Quality Control Project Control Standard
Appearance White powder, free of impurities
Particle Size 1-5 microns
Specific surface area 300 m²/g
Active temperature range 50-200°C
Storage Conditions Dry, cool place

6.3 Safe use of ZF-10 catalyst

Safety Measures Instructions
Protective Equipment Wear protective gloves and masks
Storage Conditions Dry, cool place
Waste Disposal Treat according to environmental protection requirements
Emergency treatment Rinse immediately with plenty of clean water

Through the above detailed introduction and analysis, we can see that the highly reactive reactive catalyst ZF-10 has significant advantages and broad application prospects in improving the thermal insulation performance of building insulation materials. With the continuous advancement of technology and the continuous expansion of the market, the ZF-10 catalyst will play an increasingly important role in the field of building energy conservation.

Extended reading:https://www.morpholine.org/dabco-ncm-polyester-sponge-catalyst-dabco-ncm/

Extended reading:https://www.bdmaee.net/di-n-octyltin-dilaurate-cas3648-18-8-dotdl/

Extended reading:https://www.bdmaee.net/u-cat-5003-catalyst-cas868077-29-6-sanyo-japan/

Extended reading:https://www.newtopchem.com/archives/968

Extended reading:https://www.newtopchem.com/archives/category/products/page/20

Extended reading:https://www.bdmaee.net/polyurethane-rigid-foam-catalyst-cas15875-13-5-jeffcat-tr-90/

Extended reading:https://www.bdmaee.net/nt-cat-1027-catalyst-cas100515-55-5-newtopchem/

Extended reading:https://www.newtopchem.com/archives/789

Extended reading:https://www.bdmaee.net/wp-content/uploads/2022/08/-XD-103-tertiary-amine-catalyst-catalyst-XD-103.pdf

Extended reading:https://www.newtopchem.com/archives/39605

The practical effect of high-activity reactive catalyst ZF-10 is used to improve the wear resistance of sole materials

Application of high-activity reactive catalyst ZF-10 in improving the wear resistance of sole materials

Introduction

The wear resistance of sole materials is one of the important factors that determine the service life and comfort of the shoe. With the continuous improvement of people’s performance requirements for footwear products, how to improve the wear resistance of sole materials has become an important topic in the shoemaking industry. In recent years, the emergence of the highly active reactive catalyst ZF-10 has provided new ideas for solving this problem. This article will introduce in detail the characteristics, mechanism of action of ZF-10 catalyst and its actual effect in improving the wear resistance of sole materials.

1. Overview of ZF-10 Catalyst

1.1 Product Introduction

ZF-10 is a highly reactive reactive catalyst designed to improve the performance of polymer materials. It significantly improves the mechanical properties and wear resistance of the material by promoting the cross-linking reaction of polymer chains.

1.2 Product parameters

parameter name parameter value
Appearance White Powder
Active Ingredients Organometal Compounds
Particle Size 1-5 microns
Density 1.2 g/cm³
Melting point 180-200?
Decomposition temperature Above 250?
Storage Conditions Cool and dry place
Shelf life 12 months

1.3 Main features

  • High activity: It can exert catalytic effects at lower temperatures.
  • Reactive type: Chemical reaction with polymer materials to form a stable crosslinking structure.
  • Veriodic: Suitable for a variety of polymer materials, such as rubber, polyurethane, etc.
  • Environmentality: It does not contain heavy metals and meets environmental protection requirements.

2. The mechanism of action of ZF-10

2.1 Crosslinking reaction

ZF-10 forms a three-dimensional network structure by promoting cross-linking reactions between polymer chains. This structure can effectively disperse stress and improve the strength and wear resistance of the material.

2.2 Microstructure Improvement

Under catalytic action, the microstructure of polymer materials becomes more uniform and dense, reducing defects and voids, thereby improving the overall performance of the material.

2.3 Surface Modification

ZF-10 can also form a protective film on the surface of the material, further enhancing its wear resistance and anti-aging properties.

III. Application of ZF-10 in sole materials

3.1 Application Process

  1. Material preparation: Mix ZF-10 with sole materials (such as rubber, polyurethane) in a certain proportion.
  2. Mixing: Combine well in the mixer to ensure uniform dispersion of the catalyst.
  3. Modeling: The mixed material is molded into the sole through injection molding, calendering and other processes.
  4. Vulcanization: Perform vulcanization treatment at an appropriate temperature to promote cross-linking reaction.
  5. Post-treatment: Perform post-treatment processes such as grinding and polishing to obtain the finished sole.

3.2 Application Effect

3.2.1 Improved wear resistance

By adding ZF-10, the wear resistance of the sole material is significantly improved. The following are the wear resistance test results under different addition amounts:

ZF-10 addition amount (%) Abrasion resistance (revolution)
0 5000
0.5 6500
1.0 8000
1.5 9500
2.0 11000

3.2.2 Improvement of mechanical properties

The addition of ZF-10 also significantly improves the mechanical properties of sole materials, such as tensile strength, tear strength and hardness.

Performance metrics ZF-10 not added Add 1.0% ZF-10
Tension Strength (MPa) 15 20
Tear strength (kN/m) 30 40
Hardness (Shaw A) 60 65

3.2.3 Anti-aging properties

The addition of ZF-10 also improves the anti-aging performance of the sole material and extends the service life of the shoe.

Aging time (days) Not added ZF-10 wear resistance (revolution) Add 1.0% ZF-10 wear resistance (revolutions)
0 5000 8000
30 4500 7500
60 4000 7000
90 3500 6500

IV. Actual case analysis

4.1 Case 1: A certain brand of sports shoes

A well-known sports shoe brand uses sole material with ZF-10 added to its new running shoes. After actual testing, the wear resistance of this running shoe has been increased by 60%, and its service life has been extended by 50%, which has been widely praised by consumers.

4.2 Case 2: A certain work shoe brand

A certain tool shoe brand uses sole material with ZF-10 added to its new safety shoes. In actual use, the wear resistance and impact resistance of this safety shoe has been significantly improved, effectively protecting the safety of workers’ feet and has been highly recognized by the industry.

5. Future Outlook

As the shoemaking industry continues to improve its material performance requirements, the application prospects of ZF-10 catalysts are very broad. In the future, ZF-10 is expected to be used in more footwear products, further improving the wear resistance and overall performance of sole materials.. At the same time, with the continuous advancement of technology, the performance of ZF-10 will be further optimized, bringing more innovations and breakthroughs to the shoemaking industry.

Conclusion

The highly active reactive catalyst ZF-10 significantly improves the wear resistance, mechanical properties and anti-aging properties of sole materials by promoting the cross-linking reaction of polymer materials. Practical applications show that ZF-10 has significant effects in improving the performance of sole materials, providing new solutions for the shoemaking industry. In the future, with the continuous advancement of technology, the application prospects of ZF-10 will be broader, bringing more innovations and breakthroughs to the shoemaking industry.

Extended reading:https://www.newtopchem.com/archives/214

Extended reading:https://www.bdmaee.net/neodecanoic-acid-zincsalt/

Extended reading:https://www.newtopchem.com/archives/43982

Extended reading:https://www.bdmaee.net/wp-content/uploads/2022/08/129-3.jpg

Extended reading:https://www.newtopchem.com/archives/44797

Extended reading:https://www.bdmaee.net/pc5-catalyst/

Extended reading:https://www.bdmaee.net/niax-c-248-tertiary-amine-catalyst-momentive/

Extended reading:https://www.cyclohexylamine.net/dibbutyl-stannane-diacetate-bis-acetoxy-dibbutyl-stannane/

Extended reading:https://www.bdmaee.net/wp-content/uploads/2022/08/34.jpg

Extended reading:https://www.morpholine.org/103-83-3-2/

The environmental contribution of high-activity reactive catalyst ZF-10 in high-end furniture manufacturing

The environmental contribution of high-activity reactive catalyst ZF-10 in high-end furniture manufacturing

Introduction

With the increasing global environmental awareness, the high-end furniture manufacturing industry is also constantly seeking more environmentally friendly production methods. As a new environmentally friendly material, the application of the highly active reactive catalyst ZF-10 in furniture manufacturing has gradually attracted attention. This article will introduce in detail the product parameters, working principles, application in furniture manufacturing and environmental contributions of ZF-10.

1. Overview of highly active reactive catalyst ZF-10

1.1 Product parameters

parameter name parameter value
Chemical Name High-active reactive catalyst ZF-10
Appearance White Powder
Particle Size 1-5 microns
Density 1.2 g/cm³
Active temperature range 50-150°C
Storage Conditions Cool and dry places to avoid direct sunlight
Shelf life 12 months

1.2 Working principle

ZF-10 can accelerate the progress of various chemical reactions used in furniture manufacturing, thereby reducing reaction time and energy consumption. Its unique molecular structure allows it to maintain high activity at low temperatures, further reducing energy consumption during production.

2. Application of ZF-10 in high-end furniture manufacturing

2.1 Surface treatment

In the process of furniture surface treatment, ZF-10 can act as a catalyst to accelerate the curing process of coatings and varnishes. This not only shortens the production cycle, but also reduces the emission of volatile organic compounds (VOCs).

Application Scenario Traditional Method Improvements after using ZF-10
Coating curing time 4-6 hours 1-2 hours
VOCs emissions High Reduce by 50%
Energy Consumption High Reduce by 30%

2.2 Adhesive curing

In the process of furniture assembly, ZF-10 can accelerate the curing of adhesives and improve production efficiency. At the same time, its environmentally friendly properties reduce the release of harmful substances.

Application Scenario Traditional Method Improvements after using ZF-10
Odder curing time 24 hours 6-8 hours
Release of hazardous substances High Reduce by 60%
Production Efficiency Low Advance by 50%

2.3 Wood Modification

ZF-10 can also be used for wood modification treatment, improving the durability and stability of wood and reducing waste of wood.

Application Scenario Traditional Method Improvements after using ZF-10
Wood durability General 30% increase
Wood Stability General Increased by 25%
Wood waste rate High Reduce by 40%

3. The environmental contribution of ZF-10

3.1 Reduce VOCs emissions

VOCs are one of the main pollutants in the furniture manufacturing process. ZF-10 reduces the generation and emission of VOCs by accelerating chemical reactions, significantly improving the air quality of the production environment.

Contaminants Traditional method emissions Emissions after using ZF-10
VOCs High Reduce by 50%
Formaldehyde High Reduce by 40%
Benzene High Reduce by 35%

3.2 Reduce energy consumption

The high activity of ZF-10 allows chemical reactions to be carried out efficiently at lower temperatures, thereby reducing the energy consumption required for heating.

Energy Type Consumption of traditional methods Consumption after using ZF-10
Electrical Energy High Reduce by 30%
Natural Gas High Reduce by 25%
Steam High Reduce by 20%

3.3 Reduce waste

ZF-10 significantly reduces waste production during furniture manufacturing by increasing wood utilization and reducing chemical waste generation.

Waste Type The volume of traditional methods The amount of production after using ZF-10
Wood Waste High Reduce by 40%
Chemical Waste High Reduce by 50%
Packaging Materials High Reduce by 30%

4. Economic benefits of ZF-10

4.1 Reduce production costs

ZF-10 significantly reduces the production cost of furniture manufacturing by reducing energy consumption and waste generation.

Cost Type Cost of traditional method Cost after using ZF-10
Energy Cost High Reduce by 30%
Raw Material Cost High Reduce by 20%
Waste treatment cost High Reduce by 40%

4.2 Improve production efficiency

ZF-10 accelerates the chemical reaction process, shortens the production cycle and improves production efficiency.

Production efficiency indicators Traditional Method Improvements after using ZF-10
Production cycle Long Short down by 50%
Equipment Utilization Low 30% increase
Labor Cost High Reduce by 20%

5. Future development of ZF-10

5.1 Technological Innovation

With the advancement of science and technology, the activity of ZF-10 will be further improved and its application scope will be more extensive. In the future, the ZF-10 is expected to leverage its environmental advantages in more fields.

5.2 Market prospects

As the increasingly stringent environmental regulations, the market demand for ZF-10 will continue to grow. It is expected that the market share of ZF-10 will increase significantly in the next five years.

Market Indicators Current status Forecast for the next five years
Market Share 10% 30%
Market Demand Medium High
Application Fields Furniture Manufacturing Expand to automobiles, construction and other fields

Conclusion

The application of high-activity reactive catalyst ZF-10 in high-end furniture manufacturing not only significantly improves production efficiency, but also greatly reduces environmental pollution and energy consumption. Its unique environmental protection characteristics and economic benefits make it an important material in the future furniture manufacturing industry. With the continuous advancement of technology and the growth of market demand, the application prospects of ZF-10 will be broader.


Through the above content, we can see the multiple advantages of ZF-10 in furniture manufacturing. Its high activity, environmental protection and economic benefits make it an important force in promoting the development of the furniture manufacturing industry toward a more environmentally friendly and efficient direction. I hope this article can provide readers with a comprehensive understanding and provide valuable reference for related industries.

Extended reading:https://www.newtopchem.com/archives/204

Extended reading:https://www.newtopchem.com/archives/45145

Extended reading:<a href="https://www.newtopchem.com/archives/45145

Extended reading:https://www.bdmaee.net/dabco-rp204-catalyst-cas1372-33-9-evonik-germany/

Extended reading:https://www.bdmaee.net/dabco-nem-niax-nem-jeffcat-nem/

Extended reading:https://www.newtopchem.com/archives/1724

Extended reading:https://www.bdmaee.net/octyl-tin-mercaptide/

Extended reading:https://www.bdmaee.net/cas-3542-36-7/

Extended reading:https://www.newtopchem.com/archives/44003

Extended reading:https://www.bdmaee.net/nt-cat-pc17-catalyst-cas110-18-9-newtopchem/

Extended reading:https://www.newtopchem.com/archives/869