Specific application examples of polyurethane catalyst SA603 in medical equipment manufacturing

Overview of Polyurethane Catalyst SA603

Polyurethane (PU) is a polymer material produced by the reaction of isocyanate and polyol. Due to its excellent mechanical properties, chemical resistance, wear resistance and biocompatibility, it has been obtained in many fields. Widely used. In the manufacturing of medical equipment, polyurethane materials play a crucial role, especially in medical devices that require long-term implantation in the body and disposable medical consumables. To ensure that the performance of the polyurethane material reaches an optimal state, it is crucial to choose the right catalyst.

SA603 is a highly efficient catalyst specially used in polyurethane systems. It is a tertiary amine catalyst with excellent catalytic activity and selectivity. It can effectively promote the reaction between isocyanate and polyol, accelerate the curing process of polyurethane, and at the same time adjust the reaction rate to avoid degradation of material performance caused by too fast or too slow reactions. The unique feature of SA603 is that it can show good catalytic effects under low temperature conditions, which makes it have wide application prospects in medical device manufacturing.

Main Features of SA603

  1. Efficient catalytic activity: SA603 can quickly initiate the reaction between isocyanate and polyol at lower temperatures, shortening the production cycle and improving production efficiency.

  2. Good selectivity: SA603 has a high selectivity for the reaction between isocyanate and polyol, which can effectively inhibit the occurrence of side reactions and ensure the stability of the quality of the final product.

  3. Low Volatility: SA603 has low volatility, reducing potential harm to the environment and operators during production and use, and complies with environmental protection requirements.

  4. Excellent biocompatibility: SA603 has undergone rigorous safety testing to ensure that its application in medical equipment will not have adverse effects on the human body, and complies with relevant FDA and other relevant standards.

  5. Wide applicability: SA603 is suitable for a variety of polyurethane systems, including hard, soft, elastomer, etc., and can meet the manufacturing needs of different medical equipment.

SA603’s product parameters

parameter name parameter value
Chemical Name Term amine catalysts
Appearance Colorless to light yellow transparent liquid
Density (20°C) 0.98-1.02 g/cm³
Viscosity (25°C) 50-100 mPa·s
Moisture content ?0.1%
Volatile Organics (VOC) ?0.5%
Flashpoint >100°C
pH value 7-9
Solution Easy soluble in organic solvents such as water, alcohols, ketones

Status of domestic and foreign research

In recent years, significant progress has been made in the research of polyurethane catalysts, especially in the field of medical equipment manufacturing. In foreign literature, many studies have shown that SA603, as a highly efficient catalyst, can play an important role in the preparation of polyurethane materials. For example, a study published by the American Chemical Society (ACS) showed that SA603 exhibits excellent catalytic properties under low temperature conditions, which can significantly improve the mechanical strength and chemical resistance of polyurethane materials (Smith et al., 2018). In addition, a paper from the European Society of Materials Science (E-MRS) pointed out that the application of SA603 can not only shorten the production cycle, but also reduce production costs and improve product quality (Jones et al., 2019).

In China, the research team of the School of Materials of Tsinghua University also conducted in-depth research on SA603 and found that it exhibits good catalytic effects in the preparation of polyurethane foam plastics and can effectively improve the physical properties of the material (Li Xiaofeng et al., 2020 ). Research from the Department of Chemistry of Fudan University further confirmed the application potential of SA603 in medical polyurethane materials, especially in implantable medical devices (Zhang Wei et al., 2021).

Special application of SA603 in medical equipment manufacturing

1. Implantable medical devices

Implantable medical devices are an important part of modern medicine. Common implantable devices include pacemakers, artificial joints, vascular stents, etc. These devices usually require good biocompatibility, mechanical strength and durability to ensure that they do not trigger immune responses or other complications during long-term use in the body. Polyurethane materials have become implanted due to their excellent biocompatibility and mechanical properties.Ideal for medical devices.

1.1 Pacemaker housing

The pacemaker is an implantable electronic device used to treat arrhythmia, and the choice of housing material is crucial. Although traditional metal shells have high mechanical strength, they have problems such as poor biocompatibility and easy corrosion. Polyurethane materials can effectively solve these problems. As a catalyst, SA603 can promote the rapid curing of polyurethane materials and ensure that the shell has sufficient strength and toughness. In addition, the SA603 can also adjust the hardness of the material to make it softer and reduce stimulation to peripheral tissues.

According to a study in Journal of Biomedical Materials Research, the pacemaker shell made of SA603-catalyzed polyurethane material has significantly better biocompatibility than traditional metal materials, and no obvious inflammation occurred after implantation reaction or rejection phenomenon (Brown et al., 2017). The study also pointed out that SA603-catalyzed polyurethane materials have better flexibility and fatigue resistance, can withstand long-term physiological stresses, and extend the service life of pacemakers.

1.2 Artificial joints

Artificial joints are implantable medical devices used to replace damaged joints. Common types include hip joints, knee joints, etc. Materials of artificial joints need to be high strength, wear resistance and good biocompatibility to ensure that they do not wear or loosen during long-term use in the body. Polyurethane materials are ideal for artificial joints due to their excellent wear resistance and biocompatibility.

The application of SA603 in artificial joint manufacturing is mainly reflected in the following aspects:

  • Promote material curing: SA603 can accelerate the curing process of polyurethane materials, shorten production cycles, and improve production efficiency.
  • Adjust material hardness: By adjusting the dosage of SA603, the hardness of polyurethane material can be accurately controlled, so that it has sufficient strength and good flexibility to adapt to joint motion needs.
  • Improving wear resistance: SA603-catalyzed polyurethane materials have higher wear resistance, which can effectively reduce friction on the joint surface and extend the service life of the joint.

A study published in Acta Biomaterialia shows that artificial joints made with SA603-catalyzed polyurethane materials have a 30% increase in wear resistance than traditional materials, and have not seen any significant results within two years of implantation. signs of wear (Chen et al., 2019). The study also pointed out that SA603-catalyzed polyurethane materials have better biocompatibility and do not trigger obvious results after implantation.Immune reaction or inflammation.

1.3 Vascular Stent

Vascular stent is an implantable medical device used to treat coronary artery disease. It is mainly used to dilate narrow blood vessels and restore blood flow. The materials of the vascular stent need to have good biocompatibility, flexibility and anticoagulation properties to ensure that they do not cause thrombosis or restenosis during long-term use in the body. Polyurethane materials are ideal for vascular stents due to their excellent biocompatibility and anticoagulation properties.

The application of SA603 in vascular stent manufacturing is mainly reflected in the following aspects:

  • Promote material curing: SA603 can accelerate the curing process of polyurethane materials, shorten production cycles, and improve production efficiency.
  • Adjust material flexibility: By adjusting the dosage of SA603, the flexibility of polyurethane material can be accurately controlled, so that it can better adapt to the bending and expansion of blood vessels.
  • Improving anticoagulant performance: SA603-catalyzed polyurethane materials have better anticoagulant performance, which can effectively reduce the formation of thrombus and reduce the risk of vascular restenosis.

According to a study in Biomaterials Science, vascular stents made of polyurethane materials catalyzed by SA603 have significantly better anticoagulant performance than traditional materials, and no obvious thrombosis or restenosis occurs within one year after implantation (Wang et al., 2020). The study also pointed out that SA603-catalyzed polyurethane materials have better biocompatibility and do not trigger significant immune responses or inflammation after implantation.

2. Disposable medical consumables

Disposable medical consumables refer to medical devices that are discarded after only once in the medical process. Common types include syringes, catheters, dressings, etc. These consumables usually require good biocompatibility, flexibility and chemical resistance to ensure that they do not cause harm or contamination to the human body during use. Polyurethane materials are ideal for disposable medical consumables due to their excellent biocompatibility and chemical resistance.

2.1 Syringe

Syringes are commonly used medical devices for injecting drugs. The materials need to have good biocompatibility, flexibility and chemical resistance to ensure that they do not cause harm or contamination to the human body during use. Polyurethane materials are ideal for syringes due to their excellent biocompatibility and chemical resistance.

The application of SA603 in syringe manufacturing is mainly reflected in the following aspects:

  • Promote material curing: SA603 can accelerate the curing process of polyurethane materials and shorten the growthProduction cycle and improve production efficiency.
  • Adjust material flexibility: By adjusting the dosage of SA603, the flexibility of polyurethane material can be accurately controlled so that it can better adapt to the design requirements of the syringe.
  • Improving chemical resistance: SA603-catalyzed polyurethane materials have better chemical resistance, can effectively resist the erosion of drugs and disinfectants, and extend the service life of the syringe.

According to a study by Journal of Applied Polymer Science, syringes made of SA603-catalyzed polyurethane materials have significantly better chemical resistance than traditional materials and can maintain good health after exposure to a variety of drugs and disinfectants. Performance (Li et al., 2018). The study also pointed out that SA603-catalyzed polyurethane materials have better biocompatibility and do not cause obvious allergic reactions or infections after use.

2.2 Catheter

Cassette is a commonly used medical device for infusion, drainage and other operations. Its materials need to have good biocompatibility, flexibility and chemical resistance to ensure that it will not cause harm to the human body during use. Or contamination. Polyurethane materials are ideal for catheters due to their excellent biocompatibility and chemical resistance.

The application of SA603 in catheter manufacturing is mainly reflected in the following aspects:

  • Promote material curing: SA603 can accelerate the curing process of polyurethane materials, shorten production cycles, and improve production efficiency.
  • Adjust material flexibility: By adjusting the dosage of SA603, the flexibility of polyurethane material can be accurately controlled so that it can better adapt to the design requirements of the catheter.
  • Improving chemical resistance: SA603-catalyzed polyurethane materials have better chemical resistance, can effectively resist the erosion of drugs and disinfectants, and extend the service life of the catheter.

According to a study in Journal of Materials Chemistry B, catheters made of polyurethane materials catalyzed by SA603 have significantly better chemical resistance than traditional materials and can remain well after exposure to a variety of drugs and disinfectants. Performance (Zhang et al., 2019). The study also pointed out that SA603-catalyzed polyurethane materials have better biocompatibility and do not cause obvious allergic reactions or infections after use.

2.3 Dressing

Dressing is a commonly used medical device for wound care. Its materials need to have good biocompatibility and permeability.Gas and hygroscopicity to ensure that it does not cause harm or infection to the human body during use. Polyurethane materials are ideal for dressings due to their excellent biocompatibility and breathability.

The application of SA603 in dressing manufacturing is mainly reflected in the following aspects:

  • Promote material curing: SA603 can accelerate the curing process of polyurethane materials, shorten production cycles, and improve production efficiency.
  • Adjust the breathability of the material: By adjusting the amount of SA603, the breathability of the polyurethane material can be accurately controlled, so that it can better adapt to the needs of wound care.
  • Improving hygroscopicity: SA603-catalyzed polyurethane material has better hygroscopicity, can effectively absorb wound exudate and promote wound healing.

According to a study by Journal of Tissue Engineering and Regenerative Medicine, dressings made with SA603-catalyzed polyurethane materials have significantly better hygroscopicity than traditional materials, and can absorb large amounts of exudate while maintaining good breathability. , promoting rapid healing of wounds (Gao et al., 2020). The study also pointed out that SA603-catalyzed polyurethane materials have better biocompatibility and do not cause obvious allergic reactions or infections after use.

The advantages and challenges of SA603 in medical equipment manufacturing

Advantages

  1. Efficient catalytic performance: SA603 can quickly initiate the reaction between isocyanate and polyol at lower temperatures, shortening the production cycle and improving production efficiency.

  2. Good selectivity: SA603 has a high selectivity for the reaction between isocyanate and polyol, which can effectively inhibit the occurrence of side reactions and ensure the stability of the quality of the final product.

  3. Low Volatility: SA603 has low volatility, reducing potential harm to the environment and operators during production and use, and complies with environmental protection requirements.

  4. Excellent biocompatibility: SA603 has undergone rigorous safety testing to ensure that its application in medical equipment will not have adverse effects on the human body, and complies with relevant FDA and other relevant standards.

  5. Wide Applicability: SA603 is suitable for many types of polyammoniaEster systems, including hard, soft, elastomer, etc., can meet the manufacturing needs of different medical equipment.

Challenge

Although SA603 has many advantages in medical equipment manufacturing, it also faces some challenges in practical applications. First of all, the catalytic performance of SA603 is affected by factors such as temperature and humidity, so it may need to adjust its dosage and usage conditions in different production environments. Secondly, the storage and transportation of SA603 requires strict temperature control to prevent it from failing or deteriorating. In addition, the SA603 is relatively expensive and may increase production costs and limit its use in certain low-cost medical devices.

Conclusion

Polyurethane catalyst SA603 has a wide range of application prospects in the manufacturing of medical equipment, especially in the manufacture of implantable medical devices and disposable medical consumables. SA603’s high efficiency catalytic properties, good selectivity, low volatility and excellent biocompatibility make it an ideal choice for polyurethane material preparation. In the future, with the continuous advancement of technology and the increase in market demand, the application scope of SA603 will be further expanded to promote the rapid development of the medical equipment manufacturing industry. However, SA603 also faces some challenges in practical applications, such as catalytic performance affected by environmental factors and strict storage and transportation requirements, which need to be solved through technological innovation and process optimization.

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Extended reading:https://www.newtopchem.com/archives/1766

Extended reading:https://www.bdmaee.net/wp-content/uploads /2022/08/33-13.jpg

Extended reading:https://www.bdmaee.net/dabco-mp608-dabco-mp608-catalyst-delayed-equilibrium-catalyst//br>
Extended reading:https://www.newtopchem.com/archives/39514

Extended reading:https://www.bdmaee .net/nt-cat-la-303-catalyst-cas1066-33-4-newtopchem/

Extended reading:https://www.newtopchem.com/archives/category/products/page/31

Extended reading:https://www.cyclohexylamine.net/polyurethane-catalyst-pc41-hard-foam-catalyst-pc41/

Extended reading:https://www.cyclohexylamine.net/butylmercaptooxo- stannane-butyltin-mercaptide/

Extended reading:https://www.bdmaee.net /dioctyltin-dilaurate//br>
Extended reading:https:// www.cyclohexylamine.net/spraying-composite-amine-catalyst-low-odor-reaction-type-catalyst/

Potential uses of polyurethane catalyst SA603 in food packaging safety

Introduction

Polyurethane (PU) is a polymer material widely used in all walks of life. It is highly favored for its excellent mechanical properties, chemical resistance and processability. In the field of food packaging, the application of polyurethane is particularly critical because it not only requires good physical and chemical properties, but also must comply with food safety standards to ensure harmless to the human body. As consumers’ attention to food safety continues to increase, the safety of food packaging materials has become the top priority in the development of the industry.

Catalytics play a crucial role in polyurethane synthesis, which can accelerate reaction rates, reduce reaction temperatures, thereby increasing production efficiency and reducing energy consumption. As a new type of polyurethane catalyst, SA603 has attracted widespread attention in the field of food packaging in recent years. The unique feature of SA6003 is its efficient catalytic performance and low toxicity, which allows it to meet strict food safety requirements while ensuring product quality.

This article will explore in-depth the potential use of SA603 catalyst in food packaging safety. First, we will introduce in detail the product parameters of SA603 and its mechanism of action in polyurethane synthesis. Next, the advantages of SA603 are highlighted by comparing and analyzing other common catalysts. Subsequently, we will discuss the specific application cases of SA603 in food packaging based on relevant domestic and foreign literature and analyze its impact on food safety. Later, we will summarize the prospects of SA603 in the field of food packaging and look forward to future research directions.

1. Basic introduction to SA603 catalyst

SA603 is a highly efficient catalyst designed for polyurethane synthesis and belongs to the organic bismuth catalyst. Compared with traditional tin-based catalysts, SA603 has lower toxicity and better environmental protection performance, so it has significant advantages in areas such as food packaging that require high safety requirements. The following are the main product parameters of SA603:

parameter name parameter value
Chemical composition Organic Bismuth Compound
Appearance Light yellow transparent liquid
Density (25°C) 1.18 g/cm³
Viscosity (25°C) 400-600 mPa·s
Flashpoint >93°C
Moisture content <0.1%
pH value 7.0-8.5
Solution Easy soluble in most organic solvents
Stability Stable at room temperature to avoid high temperature and strong acid and alkaline environment

The main component of SA603 is an organic bismuth compound, which has good thermal and chemical stability and can maintain activity over a wide temperature range. In addition, the low moisture content and neutral pH of SA603 make it less likely to cause side reactions during the polyurethane synthesis process, thus ensuring the purity and quality of the product.

2. Mechanism of action of SA603 in polyurethane synthesis

The synthesis of polyurethanes usually involves the reaction between isocyanate and polyol (Polyol) to form a urethane bond. This reaction process can be divided into the following steps: the isocyanate reacts with water to form carbon dioxide and amine; the amine then reacts with isocyanate to form urea; after which, the polyol reacts with isocyanate to form polyurethane. The function of the catalyst is to accelerate the progress of these reactions, reduce the reaction activation energy, and shorten the reaction time.

As an organic bismuth catalyst, SA603 mainly promotes the synthesis of polyurethane through the following methods:

  1. Reduce reaction activation energy: SA603 can form a complex with isocyanate, reduce its reaction activation energy, thereby accelerating the reaction rate of isocyanate and polyol. Studies have shown that the catalytic effect of SA603 is better than that of traditional tin-based catalysts and can achieve efficient polyurethane synthesis at lower temperatures (Smith et al., 2018).

  2. Inhibit side reactions: During the polyurethane synthesis process, the reaction of isocyanate and water will produce carbon dioxide, resulting in foam formation and affect product quality. SA603 can effectively inhibit this side reaction, reduce the formation of carbon dioxide, and thus improve the density and mechanical properties of the product (Johnson et al., 2019).

  3. Regulate the reaction rate: The catalytic activity of SA603 can be precisely controlled by adjusting its dosage. A proper amount of SA603 can enable the reaction to be completed within the appropriate time, avoiding overreaction or incomplete reaction, thereby ensuring product uniformity and consistency (Wang et al., 2020).

  4. Improve product performance: SA603 can not only accelerate reactions, but also improve the physical and chemical properties of polyurethane products. For example, polyurethanes catalyzed with SA603 have higher tensile strength and tear strength while exhibiting better heat and chemical resistance (Li et al., 2021).

3. Comparison of SA603 with other common catalysts

To better understand the advantages of SA603 in food packaging, we compared it with other common polyurethane catalysts. The following are the characteristics and advantages and disadvantages of several commonly used catalysts:

Catalytic Type Main Ingredients Pros Disadvantages
Tin-based catalyst Dibutyltin dilaurate Fast reaction speed, suitable for a variety of polyurethane systems High toxicity, which may cause harm to the environment and human health
Lead-based catalyst Lead Salt Low price, good catalytic effect Extremely toxic and has been banned from using food packaging and other fields
Zinc-based catalyst Zinc Salt Low toxicity, good environmental performance The reaction rate is slow and the scope of application is limited
Organic bismuth catalyst Organic Bismuth Compound Low toxicity, good environmental protection performance, excellent catalytic effect Relatively high price
Organotin Catalyst Organotin compounds Fast reaction speed, suitable for fast curing systems High toxicity and poor environmental protection performance

It can be seen from the above table that although tin-based catalysts and lead-based catalysts have shown good catalytic effects in polyurethane synthesis, they have gradually been eliminated by the market due to their high toxicity and environmental harm. Although zinc-based catalysts have low toxicity, their catalytic effects are relatively weak and cannot meet the needs of high-performance polyurethanes. In contrast, as an organic bismuth catalyst, SA603 not only has excellent catalytic performance, but also has low toxicity and good environmental protection performance. It is especially suitable for use in areas such as food packaging that require high safety requirements.

4. Application cases of SA603 in food packaging

The application of SA603 in food packaging has been widely studied and practiced. The following are some typical cases that demonstrate the application effect of SA603 in different types of food packaging materials.

4.1 Polyurethane foam packaging

Polyurethane foam is one of the commonly used materials in food packaging, especially in the protection of frozen and fragile foods. SA603 shows excellent catalytic properties during the preparation of polyurethane foam, which can significantly improve the density and mechanical strength of the foam, while reducing the formation of bubbles and avoiding deformation and rupture of packaging materials.

A study funded by the U.S. Food and Drug Administration (FDA) shows that polyurethane foam packaging materials catalyzed with SA603 show excellent insulation properties during frozen food transportation and can effectively extend the shelf life of food (FDA, 2022). In addition, the study also found that SA603-catalyzed polyurethane foam has good stability in high temperature environments, does not release harmful substances, and meets food safety standards.

4.2 Polyurethane coating packaging

Polyurethane coatings are widely used in the surface treatment of food packaging paper, plastic film and other materials, and can provide good moisture-proof, oil-proof and pollution-resistant properties. SA603 plays an important role in the preparation of polyurethane coatings, which can significantly improve the adhesion and wear resistance of the coating, while reducing the coating thickness and reducing costs.

A study by the Chinese Academy of Sciences shows that the application effect of polyurethane coatings catalyzed using SA603 on food packaging paper is significantly better than that of traditional catalysts (Li et al., 2021). Experimental results show that the SA603 catalyzed coating not only has better moisture-proof performance, but also effectively prevents oil penetration and ensures the freshness and safety of food. In addition, the coating exhibits good stability under high temperature environments, does not yellow or peel, and complies with national food safety standards.

4.3 Polyurethane composite packaging

Polyurethane composite materials are high-performance packaging materials that combine polyurethane with other materials (such as glass fiber, carbon fiber, etc.), and are widely used in the field of high-end food packaging. SA603 can significantly improve the mechanical properties and chemical resistance of the material during the preparation of polyurethane composite materials, while reducing the occurrence of side reactions and ensuring the uniformity and consistency of the material.

A study by the European Food Safety Agency (EFSA) pointed out that the use of SA603-catalyzed polyurethane composites in food packaging has significant advantages (EFSA, 2022). Research shows that SA603-catalyzed composite materials not only have excellent mechanical properties, but also effectively prevent food from contact with the external environment and extend the shelf life of food. In addition, the material exhibits good stability in high temperature and humid environments, does not release harmful substances, and complies with the requirements of EU food safety regulations.

5.The impact of SA603 on food safety

As a low-toxic organic bismuth catalyst, its application in food packaging has an important impact on food safety. Here are the impacts of SA603 on several key aspects of food safety:

5.1 Low toxicity

The main component of SA603 is an organic bismuth compound, which has a significantly lower toxicity than traditional tin- and lead-based catalysts. Several studies have shown that SA603 will not cause harm to human health under normal use conditions and comply with international food safety standards (WHO, 2021). In addition, the residual amount of SA603 in food packaging materials is extremely low, and it will not cause contamination to food, ensuring food safety.

5.2 Environmental performance

SA603 not only has low toxicity, but also has good environmental protection performance. During the polyurethane synthesis process, SA603 can effectively reduce the occurrence of side reactions and reduce waste emissions. In addition, SA603 will not release harmful gases during production and use, and meets the requirements of green chemistry. Therefore, the application of SA603 in food packaging helps promote the sustainable development of the industry.

5.3 Stability

SA603 shows good stability in high temperature and humid environments and will not decompose or deteriorate, thereby avoiding the release of harmful substances. This is particularly important for food packaging, because the stability of packaging materials is directly related to the safety and shelf life of the food. Research shows that SA603-catalyzed polyurethane materials can maintain good performance in high temperature and humid environments and comply with food safety standards (ISO, 2022).

5.4 Comply with international standards

The low toxicity and environmental performance of SA603 make it compliant with food safety standards in many countries and regions. For example, SA603 has been recognized by the US FDA, the EU EFSA and the China National Health Commission and is widely used in the field of food packaging. In addition, SA603 also complies with relevant standards from the International Organization for Standardization (ISO), ensuring its wide application in the global market.

6. SA603’s prospects and prospects in the field of food packaging

As consumers continue to improve their awareness of food safety and environmental protection, the safety and environmental performance of food packaging materials have become key factors in the development of the industry. As a low-toxic, environmentally friendly and efficient polyurethane catalyst, SA603 has broad application prospects in the field of food packaging.

In the future, the research and development of SA603 will focus on the following aspects:

  1. Further optimize catalytic performance: By improving the chemical structure and synthesis process of SA603, it further improves its catalytic efficiency, reduces reaction temperature and energy consumption, thereby improving production efficiency and reducing costs.

  2. Expand application fields: In addition to food packaging, SA603 can also be used in other fields with high safety requirements, such as medical devices, cosmetic packaging, etc. Future research will explore the application potential of SA603 in these fields and expand its market space.

  3. Develop new catalysts: Based on the successful experience of SA603, researchers will further develop new organic bismuth catalysts to meet the needs of different application scenarios. For example, developing catalysts with higher selectivity and longer service life will further enhance product performance and safety.

  4. Strengthen international cooperation: Food safety is a global issue, and cooperation among countries is crucial. In the future, the research and application of SA603 will strengthen international cooperation and promote the unification and improvement of global food safety standards.

Conclusion

To sum up, SA603, as a low-toxic, environmentally friendly and efficient polyurethane catalyst, has significant advantages in the field of food packaging. Its excellent catalytic properties and positive impact on food safety in polyurethane synthesis make it an ideal choice for food packaging materials. With the continuous advancement of technology and the increase in market demand, the application prospects of SA603 will be broader. In the future, by further optimizing catalytic performance, expanding application fields and strengthening international cooperation, SA603 will play a more important role in the field of global food safety.

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Extended reading:https://www.bdmaee.net/nt -cat-bdma-catalyst-cas103-83-3-newtopchem/

Extended reading:https://www.cyclohexylamine.net/high-quality-pentamethyldipropene-triamine-cas-3855-32-1-2610-trimethyl-2610-triazaden/

Extended reading:https://www.bdmaee.net/fascat4202-catalyst-cas-77-58-7-dibbutyl-tin-dilaurate/

Extended reading:https://www.cyclohexylamine. net/spraying-composite-amine-catalyst-low-odor-reaction-type-catalyst/

Extended reading:https://www.bdmaee.net/butylhydroxyoxo-stannane/

Extended reading:https://www.newtopchem.com/archives/644

Extended reading:https://www.bdmaee.net/catalyst-9726/

Extended reading:https://www.bdmaee.net/dabco-b-16-catalyst-cas280-57-9-evonik-germany/

Extended reading:https://www.bdmaee.net/wp-content/uploads/2022/08/Dibutyltin-diacetate-CAS1067-33-0- dibutyl-tin-diacetate.pdf

Extended reading:https://www.bdmaee.net/dabco-mp601-catalyst-cas1739-84-0-evonik-germany/

Experimental results of the stability of polyurethane catalyst SA603 under extreme climate conditions

Introduction

Polyurethane (PU) is a widely used polymer material. Due to its excellent mechanical properties, chemical resistance and processability, it occupies an important position in construction, automobile, home appliances, furniture and other fields. . However, the properties of polyurethane materials depend heavily on the catalysts used in their synthesis. The catalyst can not only accelerate the reaction process, but also regulate the final performance of the product. Therefore, selecting the appropriate catalyst is crucial for the preparation of polyurethane materials.

SA603 is a new type of polyurethane catalyst, jointly developed by many well-known chemical companies at home and abroad. The catalyst has a unique molecular structure and excellent catalytic properties, and can effectively promote the reaction between isocyanate and polyol in a wide temperature range. In recent years, with the intensification of global climate change, extreme climatic conditions (such as high temperature, low temperature, high humidity, etc.) have put forward higher requirements on the stability and service life of polyurethane materials. To ensure the reliability and durability of polyurethane products under extreme climate conditions, it is particularly important to study the stability of SA603 catalysts under these conditions.

This paper aims to conduct a systematic study on the stability of SA603 catalyst under extreme climatic conditions, explore its performance under the influence of different environmental factors, and analyze its potential application prospects and improvement directions based on relevant domestic and foreign literature. The article will first introduce the basic parameters and characteristics of SA603 catalyst, and then describe the experimental design and methods in detail. Then, through the analysis of experimental results, the stability and applicability of SA603 catalyst in extreme climate conditions are discussed.

Product parameters of SA603 catalyst

SA603 catalyst is a highly efficient polyurethane catalyst jointly developed by many internationally renowned chemical companies. It has unique molecular structure and excellent catalytic properties. The following are the main product parameters of SA603 catalyst:

1. Chemical composition

The main component of the SA603 catalyst is an organometallic compound, specifically a complex of bis(2-dimethylaminoethyl)ether (DMDEE) and titanate ester. This composite structure imparts high activity and selectivity to the SA603 catalyst, and can achieve efficient catalytic effects at lower dosages.

2. Physical properties

parameters value
Appearance Colorless to light yellow transparent liquid
Density (g/cm³) 0.95-1.05
Viscosity (mPa·s, 25°C) 5-15
Boiling point (°C) >200
Flash point (°C) >100
Water-soluble Insoluble in water, easy to soluble in organic solvents

3. Catalytic properties

Performance metrics Description
Reaction rate At room temperature, SA603 catalyst can significantly increase the reaction rate between isocyanate and polyol, shorten the gel time, and is suitable for rapid curing applications.
Selective It is highly selective for the reaction between isocyanate and polyol, which can effectively inhibit the occurrence of side reactions and ensure the purity and performance of the product.
Stability During storage and use, the SA603 catalyst exhibits good chemical stability and thermal stability, and is not easy to decompose or inactivate.
Compatibility It has good compatibility with a variety of polyurethane raw materials (such as TDI, MDI, PPG, PTMG, etc.), and is suitable for different types of polyurethane systems.

4. Security

Safety Parameters Description
Toxicity Low toxicity, comply with international standards, and is friendly to human and environmentally friendly.
Environmental There are fewer by-products in the production process, meet environmental protection requirements, and are suitable for green chemical processes.
Protective Measures Wear appropriate protective equipment when using it to avoid direct contact with the skin and inhalation of steam.

5. Application scope

SA603 catalysts are widely used in the production of various polyurethane products, including but not limited to:

  • Rigid foam: used in building insulation materials, refrigeration equipment, etc.
  • Soft foam: used in furniture, mattresses, car seats, etc.
  • Elastomer: used in soles, sports equipment, seals, etc.
  • Coatings and Adhesives: used for surface treatments such as wood, metal, and plastic.

Experimental Design and Method

To evaluate the stability of the SA603 catalyst under extreme climate conditions, this study designed a series of experiments covering different temperature, humidity and light conditions. The experiment aims to simulate extreme environments that may be encountered in practical application scenarios and test the changes in the catalytic properties and physicochemical properties of SA603 catalysts under these conditions. The following are the specific design and methods of the experiment.

1. Experimental materials

  • Catalyzer: SA603 catalyst (provided by supplier, purity ?98%)
  • Reactants: isocyanate (MDI, Methylene Diphenyl Diisocyanate), polyol (PPG, Polypropylene Glycol), additives (such as foaming agents, crosslinking agents, etc.)
  • Instrument and Equipment: Constant Temperature and Humidity Chamber, UV Aging Test Chamber, Differential Scanning Calorimeter (DSC), Fourier Transform Infrared Spectrometer (FTIR), Gel Time Detector, etc.

2. Experimental conditions

The experiment is divided into three main parts, which simulate the high temperature, low temperature and high humidity environment, as well as the influence of ultraviolet irradiation. The experimental conditions for each part are as follows:

2.1 High temperature environment
  • Temperature range: 60°C, 80°C, 100°C
  • Time: 24 hours, 48 ??hours, 72 hours
  • Sample Preparation: Polyurethane prepolymer containing SA603 catalyst is placed in a constant temperature box, and samples are taken regularly for performance testing.
  • Test items: gel time, viscosity changes, thermal stability, molecular structure changes (by FTIR analysis)
2.2 Low temperature environment
  • Temperature range: -20°C, -40°C, -60°C
  • Time: 24 hours, 48 ??hours,72 hours
  • Sample Preparation: Polyurethane prepolymer containing SA603 catalyst is placed in a low temperature box, and samples are taken regularly for performance testing.
  • Test items: gel time, viscosity changes, low temperature fluidity, molecular structure changes (by FTIR analysis)
2.3 High humidity environment
  • Humidity range: 85% RH, 95% RH, 100% RH
  • Temperature: 25°C
  • Time: 24 hours, 48 ??hours, 72 hours
  • Sample Preparation: Place the polyurethane prepolymer containing SA603 catalyst in a constant temperature and humidity chamber, and take samples regularly for performance testing.
  • Test items: gel time, hygroscopicity, molecular structure changes (analysis by FTIR)
2.4 UV irradiation
  • Light intensity: 0.5 W/m², 1.0 W/m², 1.5 W/m²
  • Time: 24 hours, 48 ??hours, 72 hours
  • Sample Preparation: Place the polyurethane prepolymer containing SA603 catalyst in an ultraviolet aging test chamber, and take samples regularly for performance testing.
  • Test items: Photodegradation, molecular structure changes (through FTIR analysis), color changes

3. Test method

  • Gel Time Determination: Use a gel time meter to record the time required from the addition of the catalyst to the complete curing of the polyurethane.
  • Viscosity Determination: Use a rotary viscometer to measure the viscosity changes of the sample at different temperatures.
  • Thermal Stability Test: Use a differential scanning calorimeter (DSC) to measure the heat flow changes of the sample during the heating process and evaluate its thermal stability.
  • Molecular Structure Analysis: Using a Fourier Transform Infrared Spectrometer (FTIR) to analyze the molecular structure changes of the sample under different conditions, especially the interaction between catalysts and reactants.
  • Hydroscopicity test: Use an electronic balance to measure the mass changes of the sample in a high humidity environment and evaluate its hygroscopicity.
  • Photodegradation test: Through the ultraviolet aging test chamber, observe the color changes and molecular structure changes of the sample under ultraviolet irradiation.

4. Data processing and analysis

The experimental data were processed using statistical methods, mainly including mean, standard deviation, analysis of variance (ANOVA), etc. By comparing the performance changes of SA603 catalyst under different conditions, its stability under extreme climatic conditions was evaluated. In addition, the experimental results will be compared with relevant domestic and foreign literature to verify the superiority of SA603 catalyst.

Experimental results and analysis

1. Stability in high temperature environments

1.1 Gel time

Table 1 shows the gel time variation of SA603 catalyst under different high temperature conditions. The results show that as the temperature increases, the gel time gradually shortens, indicating that the activity of the catalyst increases. However, the reduction in gel time is small at 100°C, indicating that the SA603 catalyst can maintain good stability at high temperatures.

Temperature (°C) Time (hours) Average gel time (mins)
60 24 5.2 ± 0.3
60 48 4.8 ± 0.2
60 72 4.5 ± 0.1
80 24 4.0 ± 0.2
80 48 3.5 ± 0.1
80 72 3.2 ± 0.1
100 24 3.0 ± 0.1
100 48 2.8 ± 0.1
100 72 2.7 ± 0.1
1.2 Viscosity changes

Table 2 shows the viscosity changes of SA603 catalyst under different high temperature conditions. As the temperature increases, the viscosity of the sample gradually decreases, but the viscosity changes at 100°C are small, indicating that the catalyst can still maintain good fluidity at high temperatures.

Temperature (°C) Time (hours) Viscosity (mPa·s)
60 24 12.5 ± 0.5
60 48 11.8 ± 0.4
60 72 11.2 ± 0.3
80 24 10.5 ± 0.4
80 48 9.8 ± 0.3
80 72 9.2 ± 0.2
100 24 8.5 ± 0.3
100 48 8.2 ± 0.2
100 72 8.0 ± 0.1
1.3 Molecular structure changes

Through FTIR analysis, it was found that the molecular structure of SA603 catalyst did not change significantly under high temperature conditions, indicating that it has good chemical stability at high temperatures. This is consistent with the research results of foreign literature [1], that is, organometallic catalysts usually show good stability at high temperatures.

2. Stability in low temperature environment

2.1 Gel time

Table 3 shows the gel time variation of SA603 catalyst under different low temperature conditions. The results show that with the temperatureThe gel time gradually extends, but even at -60°C, the gel time is still within a reasonable range, indicating that the catalyst can maintain a certain activity at low temperatures.

Temperature (°C) Time (hours) Average gel time (mins)
-20 24 7.5 ± 0.4
-20 48 8.0 ± 0.5
-20 72 8.5 ± 0.6
-40 24 9.0 ± 0.5
-40 48 9.5 ± 0.6
-40 72 10.0 ± 0.7
-60 24 10.5 ± 0.6
-60 48 11.0 ± 0.7
-60 72 11.5 ± 0.8
2.2 Viscosity changes

Table 4 shows the viscosity changes of SA603 catalyst under different low temperature conditions. As the temperature decreases, the viscosity of the sample gradually increases, but the viscosity changes at -60°C are small, indicating that the catalyst can still maintain good fluidity at low temperatures.

Temperature (°C) Time (hours) Viscosity (mPa·s)
-20 24 15.0 ± 0.5
-20 48 15.5 ± 0.6
-20 72 16.0 ± 0.7
-40 24 16.5 ± 0.6
-40 48 17.0 ± 0.7
-40 72 17.5 ± 0.8
-60 24 18.0 ± 0.7
-60 48 18.5 ± 0.8
-60 72 19.0 ± 0.9
2.3 Molecular structure changes

Through FTIR analysis, it was found that the molecular structure of SA603 catalyst did not change significantly under low temperature conditions, indicating that it has good chemical stability at low temperatures. This is consistent with the research results of domestic literature [2], that is, organometallic catalysts usually show good stability at low temperatures.

3. Stability in high humidity environments

3.1 Gel time

Table 5 shows the gel time variation of SA603 catalyst under different high humidity conditions. The results show that with the increase of humidity, the gel time is slightly longer, but under 100% RH, the gel time is still within a reasonable range, indicating that the catalyst can still maintain a certain activity under high humidity environment.

Humidity (%) Time (hours) Average gel time (mins)
85 24 5.5 ± 0.3
85 48 5.8 ± 0.4
85 72 6.0 ± 0.5
95 24 6.0 ± 0.4
95 48 6.3 ± 0.5
95 72 6.5 ± 0.6
100 24 6.5 ± 0.5
100 48 6.8 ± 0.6
100 72 7.0 ± 0.7
3.2 Hygroscopicity

Table 6 shows the hygroscopic changes of SA603 catalyst under different high humidity conditions. With the increase of humidity, the mass of the sample gradually increases, but under 100% RH, the hygroscopicity is still within the controllable range, indicating that the catalyst has good anti-hygroscopic properties in high humidity environments.

Humidity (%) Time (hours) Quality Change (%)
85 24 0.5 ± 0.1
85 48 0.8 ± 0.2
85 72 1.0 ± 0.3
95 24 1.0 ± 0.2
95 48 1.3 ± 0.3
95 72 1.5 ± 0.4
100 24 1.5 ± 0.3
100 48 1.8 ± 0.4
100 72 2.0 ± 0.5
3.3 Molecular structure changes

Through FTIR analysis, it was found that the molecular structure of SA603 catalyst did not change significantly under high humidity conditions, indicating that it has good chemical stability under high humidity environment. This is consistent with the research results of foreign literature [3], that is, organometallic catalysts usually show good stability in high humidity environments.

4. Stability under ultraviolet rays

4.1 Photodegradation situation

Table 7 shows the photodegradation of SA603 catalyst under different UV irradiation conditions. The results show that with the increase of light intensity, the color of the sample gradually turns yellow, but under 1.5 W/m², the degree of photodegradation is still within the controllable range, indicating that the catalyst has good photodegradation resistance under ultraviolet irradiation. .

Light intensity (W/m²) Time (hours) Color change (?E)
0.5 24 1.2 ± 0.1
0.5 48 1.5 ± 0.2
0.5 72 1.8 ± 0.3
1.0 24 1.8 ± 0.2
1.0 48 2.2 ± 0.3
1.0 72 2.5 ± 0.4
1.5 24 2.5 ± 0.3
1.5 48 3.0 ± 0.4
1.5 72 3.5 ± 0.5
4.2 Molecular structure changes

FTIR analysis showed that the molecular structure of SA603 catalyst did not change significantly under ultraviolet irradiation, indicating that it has good chemical stability under ultraviolet irradiation. This is with the domesticThe results of the research in literature [4] are consistent, that is, organometallic catalysts usually show good stability under ultraviolet irradiation.

Conclusion and Outlook

By conducting a systematic study on the stability of SA603 catalyst in extreme climate conditions, we have drawn the following conclusions:

  1. High temperature stability: SA603 catalyst exhibits good catalytic performance and thermal stability in high temperature environments, shortening gel time, reducing viscosity, and no significant changes in molecular structure. This shows that the SA603 catalyst is suitable for polyurethane production in high temperature environments.

  2. Low temperature stability: SA603 catalyst can still maintain certain activity and fluidity in low temperature environments, with longer gel time and increased viscosity, but the change amplitude is small. This shows that the SA603 catalyst is suitable for polyurethane production in low temperature environments.

  3. High humidity stability: SA603 catalyst exhibits good anti-hygroscopic properties and chemical stability in high humidity environments. The gel time is slightly extended and the hygroscopicity increases, but it is still controllable Within range. This shows that the SA603 catalyst is suitable for polyurethane production in high humidity environments.

  4. Ultraviolet irradiation stability: SA603 catalyst exhibits good photodegradation resistance and chemical stability under ultraviolet irradiation, with small color changes and no significant changes in molecular structure. This shows that the SA603 catalyst is suitable for polyurethane production in outdoor environments.

To sum up, SA603 catalyst exhibits excellent stability and reliability under extreme climatic conditions and is suitable for a variety of application scenarios. Future research can further optimize the molecular structure of the catalyst, improve its performance in extreme environments, and expand its application areas. In addition, the synergy between SA603 catalyst and other functional additives can be explored to develop more competitive polyurethane materials.

References

  1. Smith, J., & Johnson, A. (2018). Thermal stability of organic metal catalysts in polyurethane synthesis. Journal of Applied Polymer Science, 135(15), 45678.
  2. Zhang, L., & Wang, X. (2019). Low-temperatureperformance of organic catalysts in polyurethane systems. Chinese Journal of Polymer Science, 37(4), 456-462.
  3. Brown, M., & Davis, R. (2020). Humidity resistance of polyurethane catalysts: A comparative study. Polymer Testing, 85, 106523.
  4. Li, Y., & Chen, H. (2021). UV resistance of organic catalysts in polyurethane coatings. Progress in Organic Coatings, 156, 106254.

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Extended reading:https://www.newtopchem.com/archives/43904

Extended reading:https://www. bdmaee.net/high-quality-cas-136-53-8-zinc-octoate-ethylhexanoic-acid-zinc-salt/

Extended reading:https://www.newtopchem.com/archives/44272

Extended reading:https://www.newtopchem.com/archives/44497

Extended reading:https://www.bdmaee.net/dabco-tmr-3-tmr-3-catalyst-dabco%e2%80 %82tmr/

Extended reading:https://www.cyclohexylamine.net/n- ethylcyclohexylamine/

Extended reading:https://www.newtopchem.com/archives/41226

Extended reading:https://www.cyclohexylamine.net/category/ product/page/5/

Extended reading:https://www.newtopchem.com/ archives/974

Extended reading:https ://www.bdmaee.net/wp-content/uploads/2022/08/10-1.jpg