Production technology of N-formylmorpholine

N-formylmorpholine (NFM) is an important organic solvent and fine chemical raw material because of its good Due to its solubility, high boiling point and relatively low toxicity and corrosiveness, it is widely used in many industrial fields, such as aromatic hydrocarbon extraction, butene concentration, and natural gas desulfurization. The production process of NFM mainly involves the esterification reaction of morpholine and methyl formate as raw materials, usually in the presence of a catalyst. The following is a typical production process flow of N-formylmorpholine:

Raw material preparation:

  • Morpholine: A six-membered cyclic nitrogen-containing compound that serves as the amine component of the reaction.
  • Methyl formate: Methyl formate acts as an acylating agent and provides a formyl group.

Catalyst selection:

  • The choice of transesterification catalyst is crucial to the reaction efficiency. Commonly used catalysts include sodium alkoxide, potassium alkoxide, organotin, titanate and their compounds, such as sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide, Sodium tert-butoxide, potassium tert-butoxide, dibutyltin oxide, dioctyltin oxide, butyl titanate, etc.

Reaction conditions:

  • Mass ratio: The mass ratio of morpholine and methyl formate is usually 1.30~1.74:1 to ensure sufficient acylation reaction.
  • Catalyst dosage: The amount of catalyst added is generally 0.5% to 5% of the total weight of raw materials to promote the transesterification reaction.
  • Reaction pressure: The reaction can be carried out in the range of normal pressure to 0.6Mpa.
  • Reaction temperature: The appropriate reaction temperature range is 30~120? to balance the reaction rate and the suppression of side reactions.
  • Reaction time: The reaction time is usually set between 2 and 6 hours to ensure the completeness of the reaction.

Separation and purification:

  • Batch separation process:
    • Separation and recovery of methyl formate: through distillation, the operating pressure is 0.1~0.2Mpa, the reactor temperature is controlled at 68~82°C, and the methyl formate fraction is collected at the top of the tower.
    • Separation and recovery of methanol: Change the distillation pressure to normal pressure, raise the reactor temperature to 68~130°C, and collect methanol at the top of the tower.
    • Separation and recovery of morpholine: the crude product is filtered to remove the catalyst, and then distilled under a vacuum of 0.09~0.099MPa, the reactor temperature is 130 ~155?, morpholine is collected at the top of the tower.
    • Obtaining N-formylmorpholine: Maintain the above vacuum degree, raise the reactor temperature to 155~165°C, and collect N-formylmorpholine from the top of the tower.
  • Continuous separation process:
    • Similar to intermittent separation, but the entire process is carried out in continuous flow equipment, including flash tanks, evaporators, light component towers and vacuum product towers, etc., to improve efficiency and reduce energy consumption.

Product quality:

  • The N-formylmorpholine produced should be a colorless and transparent liquid that meets specific quality standards, such as purity, color, moisture content and other indicators.

The production process of N-formylmorpholine is a complex chemical engineering process that requires precise control of reaction conditions and separation steps to ensure the quality of the product quality and yield. As technology develops, continuous process optimization and improvement are necessary to increase production efficiency and reduce environmental impact.

Extended reading:

Niax A-1Niax A-99

BDMAEE Manufacture

Toyocat NP catalyst Tosoh

Toyocat MR Gel balanced catalyst tetramethylhexamethylenediamine Tosoh

N-Acetylmorpholine

N-Ethylmorpholine

NT CAT 33LV

NT CAT ZF-10

DABCO MP608/Delayed equilibrium catalyst

TEDA-L33B/DABCO POLYCAT/Gel catalyst

N-Formylmorpholine Safety Data Sheet

N-Formylmorpholine (N-Formylmorpholine), chemical formula C5H9NO, is a multifunctional organic compound widely used in chemical synthesis, Solvent and pharmaceutical industries. Due to its industrial importance, understanding its safety features is crucial to ensuring a safe workplace. The following is a summary of the N-Formylmorpholine Safety Data Sheet (SDS) based on general information covering its physical and chemical properties, health hazards, first aid measures, fire and explosion protection information, emergency release handling, handling and storage recommendations, and environmental protection measure.


1. Chemical identification

Product identification: N-formylmorpholine

Chemical name: N-Formylmorpholine

CAS number: [Fill in the actual CAS number here]

EINECS number: [Fill in the actual EINECS number here]

Molecular formula: C5H9NO

Molecular weight: about 101.13 g/mol

2. Risk Overview

Hazard Category:

  • Physical Hazards: Flammable liquids, vapors and air form explosive mixtures.
  • Health Hazards: May cause irritation and toxicity by inhalation, ingestion, or skin contact.
  • Environmental Hazard: Toxic to aquatic life.

Signal word: warning

Hazard Statement:

  • H225: Highly flammable liquid and vapor.
  • H315: Causes skin irritation.
  • H319: Causes serious eye irritation.
  • H335: May cause respiratory tract irritation.
  • H411: Toxic to aquatic life with long lasting effects.

Precautionary instructions:

  • P210: Keep away from heat, sparks, open flames and hot surfaces.
  • P261: Avoid breathing dust/fume/gas/mist/vapor/spray.
  • P273: Avoid release into the environment.
  • P305+P351+P338: If in eyes: Rinse carefully with water for several minutes. If you wear contact lenses and can easily remove them, remove them. Continue rinsing.

3. Composition/information components

  • Main ingredient: N-formylmorpholine
  • Purity/Concentration: [Fill in the actual purity/concentration here]
  • Other ingredients: [Fill in other additives or impurities here]

4. First aid measures

Inhalation:

  • Move to fresh air and keep breathing clear. If breathing is difficult, give oxygen. Seek medical attention.

Skin contact:

  • Take off contaminated clothing immediately and rinse skin with plenty of running water for at least 15 minutes. Seek medical attention.

Eye contact:

  • Immediately lift the eyelids and rinse thoroughly with running water or saline for 15 minutes. Seek medical attention.

Ingestion:

  • Do not induce vomiting. If swallowed, do not drink water unless directed by your doctor. Get medical attention immediately.

5. Firefighting measures

Fire-extinguishing media:

  • Use solvent-resistant foam, dry powder, or carbon dioxide to extinguish fires.

Special hazards:

  • Combustion produces toxic fumes, including carbon monoxide and nitrogen oxides.

6. Emergency leakage treatment

  • Wear appropriate personal protective equipment.
  • Isolate the leakage area and avoid direct contact.
  • Small spills: absorb with sand or other inert materials.
  • Substantial leakage: build dikes or dig pits to contain them.

7. Operation and storage

Operation precautions:

  • Operate in a well-ventilated area.
  • Avoid the generation of dust and vapors.
  • Use explosion-proof electrical equipment.

Storage Notes:

  • Store in a cool, dry and well-ventilated place.
  • Keep away from heat, sparks and open flames.
  • Store separately from oxidizing agents.

8. Exposure control/personal protection

Engineering Control:

  • Provide adequate local exhaust or general ventilation.

Respiratory protection:

  • Wear appropriate respiratory protective equipment when air pollutants exceed standards.

Eye protection:

  • Wear chemical safety glasses.

Body protection:

  • Wear protective clothing, gloves, and shoe covers.

9. Physical and chemical properties

  • Appearance and properties: Colorless to slightly yellow transparent liquid.
  • Melting point/freezing point: [Fill in actual melting point here]
  • Boiling point/boiling range: [Fill in actual boiling point here]
  • Flashpoint: [Fill in actual flashpoint here]
  • Explosion limit: [Fill in the actual explosion limit here]

10. Stability and reactivity

  • Avoid contact with strong oxidants, strong acids, and strong alkalis.

11. Toxicological information

  • Acute toxicity: LD50 (orally administered to mice) [fill in actual data here] mg/kg
  • Chronic toxicity: Long-term exposure may affect liver and kidney function.

12. Ecological information

  • Biodegradability: [Fill in actual data here]
  • Bioconcentration or bioaccumulation: [Fill in actual data here]

13. Disposal

  • Waste nature: [Fill in the actual waste nature here.??]
  • Waste disposal method: [Fill in the actual waste disposal method here]

14. Transportation information

  • United Nations number: [Fill in the actual UN number here]
  • Packaging category: [Fill in the actual packaging category here]

15. Regulatory information

  • Regulations: Comply with local and international chemical management regulations.

16. Other information

  • References: [List references here]

Please note that this SDS summary is based on general information. The actual safety data sheet should contain specific CAS number, EINECS number, purity , hazard classification and specific operating instructions. Always consult the complete safety data sheet and follow all applicable safety regulations before handling any chemical.

Extended reading:

Niax A-1Niax A-99

BDMAEE Manufacture

Toyocat NP catalyst Tosoh

Toyocat MR Gel balanced catalyst tetramethylhexamethylenediamine Tosoh

N-Acetylmorpholine

N-Ethylmorpholine

NT CAT 33LV

NT CAT ZF-10

DABCO MP608/Delayed equilibrium catalyst

TEDA-L33B/DABCO POLYCAT/Gel catalyst

The role of N-formylmorpholine in pharmaceutical applications

N-Formylmorpholine (NFM), as a multifunctional organic compound, is not only used in the fields of industrial solvents and extraction agents It has a wide range of applications and plays an important role in the field of medicinal chemistry. Its chemical structure gives it unique advantages as an intermediate, reaction medium, and modifier. The following are some important roles of N-formylmorpholine in pharmaceutical applications:

1. Chemical intermediates

N-Formylmorpholine can be used as a key intermediate in the synthesis of various drugs. The chemical reactions it participates in can build complex molecular skeletons, especially when synthesizing drug molecules containing heterocyclic structures. For example, NFM can serve as a formylation reagent to introduce a formyl group, a common functional group in many bioactive molecules. The introduction of formyl groups can not only change the polarity and solubility of the drug, but may also enhance the biological activity or metabolic stability of the drug.

2. Reaction solvent

NFM, as a mild and stable solvent, can promote a variety of chemical reactions without destroying sensitive intermediates. Its use in organic synthesis reduces dependence on traditional toxic or unstable solvents and improves reaction selectivity and yield. Especially in multi-step synthesis processes, the use of N-formylmorpholine can simplify reaction conditions and reduce the formation of by-products, thus improving the overall synthesis efficiency and economy.

3. Improve the physical and chemical properties of drugs

By interacting with drug molecules, N-formylmorpholine can improve the solubility, stability and bioavailability of drugs. For example, by forming NFM derivatives, drug forms with better pharmacokinetic properties can be designed, which can help improve the absorption, distribution, metabolism, and excretion (ADME) properties of the drug.

4. Preparation of drug prodrugs

NFM is also used in the preparation of drug prodrugs, such as the preparation of specifically labeled compounds through reactions involving NFM for drug metabolism research or the development of radiopharmaceuticals. These labeled compounds can help researchers track the metabolic pathways of drugs in the body and evaluate the targeting and safety of drugs.

5. Development of drug delivery systems

NFM can also be used to develop new drug delivery systems. Due to its good solubility and compatibility with other substances, NFM can be used as part of the carrier material to encapsulate drugs to achieve sustained or targeted release, reduce drug side effects and improve therapeutic effects.

6. Antibacterial and antiseptic applications

N-Formylmorpholine has certain antibacterial properties and can be used as a preservative in certain pharmaceutical formulations to extend the validity period of pharmaceutical preparations. This is particularly important for drugs that require long-term storage, ensuring that the drug maintains its efficacy throughout its shelf life.

7. Research Tools

In the process of drug discovery and development, NFM is used as a research tool to screen and optimize drug candidate molecules. It helps chemists understand interactions between molecules, identify potential drug targets, and evaluate the pharmacological activity of compounds.

In summary, the role of N-formylmorpholine in pharmaceutical applications is multifaceted, from serving as a chemical intermediate and solvent, From improving the physicochemical properties of drugs to the development of drug delivery systems and preservatives, NFM has taken its place in modern medicinal chemistry. With the continuous deepening of scientific research, the potential application fields of NFM will be further expanded. However, it is worth noting that the use of NFM needs to strictly follow safety regulations. Considering its potential irritation and toxicity, it must be operated under professional guidance to protect the health and safety of laboratory personnel.

Extended reading:

Niax A-1Niax A-99

BDMAEE Manufacture

Toyocat NP catalyst Tosoh

Toyocat MR Gel balanced catalyst tetramethylhexamethylenediamine Tosoh

N-Acetylmorpholine

N-Ethylmorpholine

NT CAT 33LV

NT CAT ZF-10

DABCO MP608/Delayed equilibrium catalyst

TEDA-L33B/DABCO POLYCAT/Gel catalyst

PRODUCT