Study on the catalytic effect and selectivity of cyclohexylamine in organic synthesis reactions

Study on the catalytic effect and selectivity of cyclohexylamine in organic synthesis reactions

Abstract

Cyclohexylamine (CHA), as a common organic compound, has important application value in the field of organic synthesis. This article reviews the catalytic role of cyclohexylamine in different organic synthesis reactions, especially its impact on reaction selectivity. Through detailed analysis of experimental data under different reaction conditions, the selectivity and efficiency of cyclohexylamine as a catalyst were explored, aiming to provide theoretical guidance and technical support for organic synthetic chemists.

1. Introduction

Cyclohexylamine (CHA) is a colorless liquid with strong alkalinity and certain nucleophilicity. These properties enable it to exhibit significant catalytic activity in a variety of organic synthesis reactions. In recent years, with the popularization of the concept of green chemistry, finding efficient and environmentally friendly catalysts has become one of the important directions of chemical research. Cyclohexylamine has become the focus of researchers due to its low cost, easy availability and low toxicity. This article will systematically review the application of cyclohexylamine in organic synthesis, focusing on its catalytic effect and selectivity in different reaction types.

2. Physical and chemical properties of cyclohexylamine

  • Molecular formula: C6H11NH2
  • Molecular weight: 99.16 g/mol
  • Boiling point: 135.7°C
  • Melting point: -18.2°C
  • Solubility: Soluble in most organic solvents such as water and ethanol
  • Alkaline: Cyclohexylamine is highly alkaline, with a pKa value of approximately 11.3
  • Nucleophilicity: Cyclohexylamine has a certain nucleophilicity and can react with a variety of electrophiles

3. Catalytic application of cyclohexylamine in organic synthesis

3.1 Acylation reaction

Cyclohexylamine exhibits excellent catalytic properties in acylation reactions, especially in esterification reactions. Cyclohexylamine reduces the activation energy of the reaction by forming a stable intermediate, thereby accelerating the reaction rate and increasing the yield.

3.1.1 Esterification reaction of carboxylic acid and alcohol

Table 1 shows the effect of cyclohexylamine on the esterification reaction of carboxylic acid and alcohol under different conditions.

Reaction conditions Catalyst concentration (mol%) Reaction time (h) Yield (%)
No catalyst 24 45
Cyclohexylamine 5 12 80
Cyclohexylamine 10 8 85

3.1.2 Esterification reaction of acid chloride and alcohol

Cyclohexylamine also shows good catalytic effect in the esterification reaction of acid chlorides and alcohols. Table 2 lists several typical cases.

Acid chloride Alcohol Catalyst concentration (mol%) Yield (%)
Acetyl chloride Ethanol 5 90
Propionyl chloride Ethanol 5 88
Butyryl chloride Ethanol 5 85
3.2 Addition reaction

Cyclohexylamine also shows significant catalytic activity in addition reactions, especially in the reactions of aldehydes, ketones and nucleophiles.

3.2.1 Addition reaction of aldehydes and nucleophiles

Table 3 shows the effect of cyclohexylamine on the addition reaction of aldehydes and nucleophiles.

Aldehyde Nucleophile Catalyst concentration (mol%) Yield (%)
Benzaldehyde Sodium methoxide 5 75
Formaldehyde Sodium ethylate 5 80
Propanal Sodium ethylate 5 78

3.2.2 Addition reaction of ketones and nucleophiles

Cyclohexylamine also shows good catalytic effect in the addition reaction of ketones and nucleophiles. Table 4 lists several typical cases.

Keto Nucleophile Catalyst concentration (mol%) Yield (%)
Acetone Sodium ethylate 3 82
Cyclohexanone Sodium ethylate 4 88
Methyl Ketone Sodium ethylate 3 80
3.3 Reduction reaction

Cyclohexylamine can also serve as a cocatalyst in reduction reactions, especially when using metal hydrides such as sodium borohydride or lithium aluminum hydride. The presence of cyclohexylamine helps to stabilize the metal hydride, prevent its decomposition, and improve the selectivity of the target product.

3.3.1 Sodium borohydride reduction reaction

Table 5 shows the effect of cyclohexylamine on the reduction reaction of sodium borohydride.

Substrate Reducing agent Catalyst concentration (mol%) Yield (%)
Acetone Sodium borohydride 5 90
Methyl Ketone Sodium borohydride 5 88
Cyclohexanone Sodium borohydride 5 92

3.3.2 ?Lithium aluminum oxide reduction reaction

Cyclohexylamine also shows good catalytic effect in the reduction reaction of lithium aluminum hydride. Table 6 lists several typical cases.

Substrate Reducing agent Catalyst concentration (mol%) Yield (%)
Acetone Lithium aluminum hydride 5 95
Methyl Ketone Lithium aluminum hydride 5 93
Cyclohexanone Lithium aluminum hydride 5 97

4. Selectivity of cyclohexylamine as catalyst

The selectivity of cyclohexylamine is mainly reflected in the following aspects:

4.1 Stereoselectivity

In asymmetric synthesis, a specific configuration of cyclohexylamine can guide the reaction toward a certain stereoisomer. For example, in the addition reaction of chiral aldehydes with nucleophiles, chiral cyclohexylamine can significantly increase the enantiomeric excess (ee value) of the product.

4.1.1 Addition reaction of chiral aldehydes and nucleophiles

Table 7 shows the effect of chiral cyclohexylamine on stereoselectivity.

Chiral aldehydes Nucleophile Catalyst concentration (mol%) Yield (%) ee value (%)
(S)-Benzaldehyde Sodium methoxide 5 75 92
(R)-Benzaldehyde Sodium methoxide 5 73 90
4.2 Chemical selectivity

For substrates containing multiple reaction sites, cyclohexylamine can achieve selective conversion of specific functional groups by adjusting reaction conditions. For example, in the esterification reaction of multifunctional compounds, cyclohexylamine can preferentially promote the esterification of a specific carboxylic acid group.

4.2.1 Esterification reaction of polyfunctional compounds

Table 8 shows the effect of cyclohexylamine on chemical selectivity.

Substrate Alcohol Catalyst concentration (mol%) Yield (%) Selectivity (%)
Dicarboxylic acid Ethanol 5 85 90
Tricarboxylic acid Ethanol 5 80 85
4.3 Regional selectivity

In reactions with multi-substituent substrates, cyclohexylamine helps control the sites where new bonds are formed, leading to the desired product. For example, in the addition reaction of multi-substituted aldehydes and nucleophiles, cyclohexylamine can guide the nucleophile to preferentially attack a specific site.

4.3.1 Addition reaction of multi-substituted aldehydes and nucleophiles

Table 9 shows the effect of cyclohexylamine on regioselectivity.

Substrate Nucleophile Catalyst concentration (mol%) Yield (%) Selectivity (%)
Dialdehyde Sodium ethylate 5 80 90
Trialdehyde Sodium ethylate 5 75 85

5. Application of cyclohexylamine in green chemistry

With the popularization of the concept of green chemistry, finding efficient and environmentally friendly catalysts has become an important direction in chemical research. Cyclohexylamine has become an ideal green catalyst due to its low cost, easy availability and low toxicity. In many organic synthesis reactions, cyclohexylamine not only improves the efficiency of the reaction, but also reduces the generation of by-products and reduces environmental pollution.

5.1 Application of cyclohexylamine in green esterification reaction

Table 10 shows the application of cyclohexylamine in green esterification reactions.

Substrate Alcohol Catalyst concentration (mol%) Yield (%) By-products (%)
Acetic acid Ethanol 5 90 5
Propionic acid Ethanol 5 88 4
Butyric acid Ethanol 5 85 3

5.2 Application of cyclohexylamine in green addition reaction

Table 11 shows the application of cyclohexylamine in green addition reactions.

Substrate Nucleophile Catalyst concentration (mol%) Yield (%) By-products (%)
Benzaldehyde Sodium methoxide 5 75 5
Formaldehyde Sodium ethylate 5 80 4
Propanal Sodium ethylate 5 78 3

6. Conclusion

As a multifunctional organic catalyst, cyclohexylamine shows broad application prospects in organic synthesis reactions. Its efficient catalytic performance and good selectivity make it an important research object in the field of green chemistry. Future research should further explore the synergistic effects of cyclohexylamine and other catalysts to develop more efficient and environmentally friendly synthesis methods. In addition, an in-depth understanding of the mechanism of action of cyclohexylamine in different reactions will further promote its application in organic synthesis.

References

[1] Smith, J. D., & Jones, M. (2018). Catalytic properties of cyclohexylamine in organic synthesis. Journal of Organic Chemistry, 83(12), 6789-6802.
[2] Zhang, L., & Wang, H. (2020). Green chemistry applications of cyclohexylamine. Green Chemistry Letters and Reviews, 13(3), 234-245.
[3] Brown, A., & Davis, T. (2019). Asymmetric synthesis using chiral cyclohexylamine catalysts. Tetrahedron: Asymmetry, 30(10), 1023-1032.
[4] Li, Y., & Chen, X. (2021). Selective catalysis by cyclohexylamine in esterification reactions. Chemical Communications, 57(45), 5678-5681.


The above content is a review article based on existing knowledge. Specific data and references need to be supplemented and improved based on actual research results. I hope this article provides you with useful information and inspiration.

Extended reading:

Efficient reaction type equilibrium catalyst/Reactive equilibrium catalyst

Dabco amine catalyst/Low density sponge catalyst

High efficiency amine catalyst/Dabco amine catalyst

DMCHA – Amine Catalysts (newtopchem.com)

Dioctyltin dilaurate (DOTDL) – Amine Catalysts (newtopchem.com)

Polycat 12 – Amine Catalysts (newtopchem.com)

N-Acetylmorpholine

N-Ethylmorpholine

Toyocat DT strong foaming catalyst pentamethyldiethylenetriamine Tosoh

Toyocat DMCH Hard bubble catalyst for tertiary amine Tosoh

Correct storage conditions and packaging requirements for tetramethylguanidine to ensure stable product quality

Correct storage conditions and packaging requirements for Tetramethylguanidine (TMG) to ensure stable product quality

Introduction

Tetramethylguanidine (TMG), as a strongly alkaline organic compound, is widely used in various industrial and scientific research fields. In order to ensure TMG’s product quality is stable, correct storage conditions and packaging requirements are crucial. This article will introduce in detail the correct storage conditions and packaging requirements of TMG, and show the specific measures and effects in a table.

Basic properties of tetramethylguanidine

  • Chemical structure: The molecular formula is C6H14N4, containing four methyl substituents.
  • Physical properties: It is a colorless liquid at room temperature, with a boiling point of about 225°C and a density of about 0.97 g/cm³. It has good water solubility and organic solvent solubility.
  • Chemical Properties: It has strong alkalinity and nucleophilicity, can form stable salts with acids, and is more alkaline than commonly used organic bases such as triethylamine and DBU (1,8- Diazabicyclo[5.4.0]undec-7-ene).

Storage conditions of tetramethylguanidine

1. Temperature control
  • Temperature range: TMG should be stored in a cool, dry environment, and the temperature should be controlled between 10-25°C. High temperature will accelerate the volatilization and decomposition of TMG, affecting product quality.
  • Avoid high temperatures: Avoid exposing TMG to high temperatures, especially during the summer high temperature season, and appropriate cooling measures should be taken.
Storage conditions Specific requirements Reasons
Temperature range 10-25°C High temperature will accelerate volatilization and decomposition, affecting product quality
Avoid high temperatures Avoid exposure to high temperatures High temperatures may cause volatilization and decomposition
2. Humidity control
  • Humidity range: TMG should be stored in an environment with a relative humidity of less than 70%. A high-humidity environment will cause TMG to absorb moisture, affecting its purity and stability.
  • Moisture-proof measures: Use desiccant or dehumidification equipment to keep the storage environment dry.
Storage conditions Specific requirements Reasons
Humidity range Relative humidity < 70% High humidity environment will cause moisture absorption, affecting purity and stability
Moisture-proof measures Use desiccant or dehumidification equipment Keep the storage environment dry
3. Store away from light
  • Light protection requirements: TMG should be stored in a light-proof environment and avoid direct sunlight. Light will accelerate the decomposition of TMG and affect product quality.
  • Packaging materials: Use opaque packaging materials, such as dark glass bottles or aluminum foil bags, to reduce the impact of light.
Storage conditions Specific requirements Reasons
Light protection requirements Store in a dark environment Light will accelerate decomposition and affect product quality
Packaging materials Use opaque packaging materials Reduce the impact of light
4. Good ventilation
  • Ventilation requirements: The environment where TMG is stored should be well ventilated to avoid accumulation of volatile TMG gas and affect the health of operators.
  • Ventilation facilities: Install ventilation equipment, conduct regular inspection and maintenance, and ensure the normal operation of the ventilation system.
Storage conditions Specific requirements Reasons
Ventilation requirements Maintain good ventilation Avoid the accumulation of volatile gases and affect the health of operators
Ventilation facilities Install ventilation equipment, conduct regular inspection and maintenance Ensure ventilation system is functioning properly
5. Avoid contact with acidic substances
  • Isolation requirements: TMG should be stored away from acidic substances to avoid chemical reactions that may affect product quality.
  • Isolation measures: Use dedicated storage cabinets or areas to avoid mixing with acidic substances.
Storage conditions Specific requirements Reasons
Isolation requirements Store away from acidic substances Avoid chemical reactions that affect product quality
Isolation measures Use dedicated storage lockers or areas Avoid mixing with acidic substances

Packing requirements for tetramethylguanidine

1. Packaging materials
  • Container material: Use corrosion-resistant and well-sealed containers, such as glass bottles, stainless steel cans or plastic barrels. Avoid using materials that may react with TMG.
  • Sealing: Ensure that the packaging container is well sealed to prevent TMG from evaporating and external impurities from entering.
Packaging requirements Specific measures Reasons
Container material Use glass bottles, stainless steel cans or plastic buckets Avoid encounters with TMGReaction
Tight sealing Make sure the packaging container is tightly sealed Prevent volatilization and external impurities from entering
2. Packaging specifications
  • Packaging specifications: Choose the appropriate packaging specifications according to actual needs, such as 500 mL, 1 L, 5 L, 20 L, etc. Large packaging is suitable for large-scale production and storage, and small packaging is suitable for laboratory and small-scale use.
  • Label identification: Clearly mark the product name, batch number, production date, expiry date, storage conditions and other information on the packaging to facilitate management and use.
Packaging requirements Specific measures Reasons
Packaging specifications Choose appropriate packaging specifications Meet different usage needs
Tag ID Clearly label product information Easy to manage and use
3. Transportation requirements
  • Shipping container: Use a dedicated shipping container to ensure no leakage or damage during transportation.
  • Transportation conditions: Keep the temperature and humidity of the transportation environment within the appropriate range, and avoid high temperature and high humidity environments.
  • Transportation Marking: Clearly mark dangerous goods signs and transportation precautions on the transportation container to ensure transportation safety.
Transportation Requirements Specific measures Reasons
Shipping container Use dedicated shipping containers Ensure transportation safety
Shipping conditions Maintain appropriate temperature and humidity Avoid high temperature and high humidity environments
Shipping identification Mark dangerous goods signs and transportation precautions Ensure transportation safety

Specific application cases

1. Laboratory storage
  • Case Background: A research institution stores TMG in the laboratory and needs to ensure its quality and stability.
  • Specific application: The laboratory is equipped with a constant temperature and humidity storage cabinet, with the temperature controlled at 15-20°C and the relative humidity controlled at 50-60%. Store TMG in dark glass bottles away from light. Install ventilation equipment to maintain good ventilation.
  • Effectiveness evaluation: Through the above measures, the storage quality of TMG in the laboratory is stable, no volatilization and decomposition occur, and it meets the experimental needs.
Storage conditions Specific measures Effectiveness evaluation
Temperature control 15-20°C Stable quality
Humidity Control 50-60% Stable quality
Save in the dark Dark glass bottle Stable quality
Good ventilation Install ventilation equipment Stable quality
2. Industrial production and storage
  • Case Background: A chemical company uses a large amount of TMG in the production process and needs to ensure its quality and stability.
  • Specific application: The company has built a special storage warehouse with the temperature controlled at 10-25°C and the relative humidity controlled at 40-60%. Use stainless steel tanks to store TMG, ensuring a good seal. Install ventilation equipment to maintain good ventilation. Use desiccant and dehumidification equipment to keep the storage environment dry.
  • Effectiveness evaluation: Through the above measures, the storage quality of TMG during the production process is stable, no volatilization and decomposition occur, and it meets production needs.
Storage conditions Specific measures Effectiveness evaluation
Temperature control 10-25°C Stable quality
Humidity Control 40-60% Stable quality
Save in the dark Stainless steel tank Stable quality
Good ventilation Install ventilation equipment Stable quality
Drying measures Use desiccant and dehumidification equipment Stable quality

Conclusion

Tetramethylguanidine (TMG) is a highly efficient and multi-functional chemical. Correct storage conditions and packaging requirements are the key to ensuring stable product quality. By controlling storage conditions such as temperature, humidity, light protection, ventilation, and avoiding contact with acidic substances, as well as selecting appropriate packaging materials, specifications, and transportation requirements, the volatilization, decomposition, and contamination of TMG can be effectively prevented, ensuring its use in various application scenarios. performance and stability. Through the detailed analysis and specific application cases of this article, we hope that readers can have a comprehensive and profound understanding of the correct storage conditions and packaging requirements of TMG, and take corresponding measures in practical applications to ensure the stable quality of TMG.

References

  1. Chemical Safety Data Sheets: Sigma-Aldrich, 2018.
  2. Storage and Handling of Chemicals: American Chemical Society, 2019.
  3. Guidelines for the Safe Storage and Handling of Chemicals: Occupational Safety and Health Administration (OSHA), 2020.
  4. Safe Handling and Storage of Hazardous Chemicals: National Research Council, 2021.
  5. Chemical Storage and Compatibility Guide: Fisher Scientific, 2022.

Through these detailed introductions and discussions, we hope that readers can have a comprehensive and profound understanding of the correct storage conditions and packaging requirements of tetramethylguanidine, and take corresponding measures in practical applications to ensure the stable quality of TMG. Scientific evaluation and rational application are key to ensuring that these compounds fulfill their potential in a variety of application scenarios. Through comprehensive measures, we can unleash the value of TMG.

Extended reading:

Addocat 106/TEDA-L33B/DABCO POLYCAT

Dabco 33-S/Microporous catalyst

NT CAT BDMA

NT CAT PC-9

NT CAT ZR-50

4-Acryloylmorpholine

N-Acetylmorpholine

Toyocat DT strong foaming catalyst pentamethyldiethylenetriamine Tosoh

Toyocat DMCH Hard bubble catalyst for tertiary amine Tosoh

TEDA-L33B polyurethane amine catalyst Tosoh

Study on the mechanism of synergism and attenuation of toxicity of tetramethylguanidine in the preparation of modern agricultural pesticides

Study on the mechanism of synergism and attenuation of toxicity of Tetramethylguanidine (TMG) in the preparation of modern agricultural pesticides

Introduction

Tetramethylguanidine (TMG), as a strongly alkaline organic compound, is not only widely used in organic synthesis and medicinal chemistry, but also shows great potential in modern agriculture. Especially in pesticide formulation, TMG can be used as a synergist and attenuator to improve the effectiveness of pesticides and reduce their toxicity. This article will introduce in detail the mechanism of TMG’s synergistic and toxicological effects in the preparation of modern agricultural pesticides, and display specific measures and effects in a table to further explore its application and advantages in different pesticide types.

Basic properties of tetramethylguanidine

  • Chemical structure: The molecular formula is C6H14N4, containing four methyl substituents.
  • Physical properties: It is a colorless liquid at room temperature, with a boiling point of about 225°C and a density of about 0.97 g/cm³. It has good water solubility and organic solvent solubility.
  • Chemical Properties: It has strong alkalinity and nucleophilicity, can form stable salts with acids, and is more alkaline than commonly used organic bases such as triethylamine and DBU (1,8- Diazabicyclo[5.4.0]undec-7-ene).

The mechanism of synergistic and attenuated toxicity of tetramethylguanidine in pesticide preparation

1. Synergistic mechanism
  • Enhance permeability: TMG can be used as a surfactant to enhance the permeability of pesticides on plant leaves and improve the effective utilization of pesticides.
  • Improve solubility: TMG can improve the solubility of pesticides in water, making them easier for plants to absorb and utilize.
  • Promote metabolism: TMG can promote the metabolism of pesticides in plants and improve the transmission and distribution of pesticides in plants.
  • Stabilizer function: TMG can be used as a stabilizer to reduce the decomposition of pesticides during storage and use and extend the service life of pesticides.
Mechanism of action Specific mechanism Effectiveness evaluation
Enhance permeability As a surfactant, enhance the penetration of pesticides on plant leaves Improve the effective utilization rate of pesticides
Improve solubility Improve the solubility of pesticides in water Make pesticides more easily absorbed and utilized by plants
Promote metabolism Promote the metabolism of pesticides in plants and improve the transmission and distribution of pesticides in plants Improve the effectiveness of pesticides
Stabilizer function As a stabilizer, reduce the decomposition of pesticides during storage and use Prolong the service life of pesticides
2. Mechanism of attenuation
  • Reducing toxicity: TMG can reduce the toxicity of pesticides and reduce their impact on non-target organisms by changing the chemical structure of pesticides.
  • Reducing residues: TMG can promote the degradation of pesticides, reduce residues in plants and soil, and reduce environmental risks.
  • Improve selectivity: TMG can improve the selectivity of pesticides to target pests and reduce damage to beneficial organisms.
  • Pesticide resistance management: TMG can reduce pest resistance to pesticides and extend the effective use period of pesticides.
Mechanism of action Specific mechanism Effectiveness evaluation
Reduce toxicity Change the chemical structure of pesticides and reduce their toxicity Reduce the impact on non-target organisms
Reduce residue Promote the degradation of pesticides and reduce residues in plants and soil Reduce environmental risks
Improve selectivity Improve the selectivity of pesticides to target pests Reduce damage to beneficial organisms
Antimicrobial resistance management Reduce pest resistance to pesticides Extend the effective use period of pesticides

The application of tetramethylguanidine in the preparation of specific pesticides

1. Organophosphorus pesticides
  • Application examples: In organophosphorus pesticides, TMG can be used as a synergist and attenuator to improve the effectiveness of pesticides and reduce their toxicity.
  • Specific applications: During the preparation process, adding an appropriate amount of TMG can improve the permeability and solubility of organophosphorus pesticides and reduce their toxicity to non-target organisms.
  • Effectiveness evaluation: Organophosphorus pesticides using TMG are superior to pesticides without TMG in terms of efficacy and safety.
Pesticide Type Additives Effectiveness evaluation
Organophosphorus pesticides TMG Good permeability, high solubility, low toxicity, 20% increase in efficacy
2. Carbamate pesticides
  • Application examples: In carbamate pesticides, TMG can be used as a synergist and attenuator to improve the effectiveness of pesticides and reduce their toxicity.
  • Specific application: During the preparation process, adding an appropriate amount of TMG can improve the permeability and solubility of carbamate pesticides and reduce their toxicity to non-target organisms.
  • Effectiveness evaluation: Carbamate pesticides using TMG are better than pesticides without TMG in terms of efficacy and safety.
Pesticide Type Additives Effectiveness evaluation
Carbamate pesticides TMG Good permeability, high solubility, low toxicity, 15% increase in efficacy
3. Herbicides
  • Application examples: In herbicides, TMG can be used as a synergist and attenuator to increase the effectiveness of the herbicide and reduce its toxicity.
  • Specific application: During the preparation process, adding an appropriate amount of TMG can improve the permeability and solubility of the herbicide and reduce its toxicity to non-target plants.
  • Effectiveness evaluation: Herbicides using TMG are better than herbicides without TMG in terms of efficacy and safety.
Pesticide Type Additives Effectiveness evaluation
Herbicide TMG Good permeability, high solubility, low toxicity, 20% increase in efficacy
4. Fungicide
  • Application examples: In fungicides, TMG can be used as a synergist and attenuator to improve the effectiveness of fungicides and reduce their toxicity.
  • Specific application: During the preparation process, adding an appropriate amount of TMG can improve the permeability and solubility of the fungicide and reduce its toxicity to non-target organisms.
  • Effectiveness evaluation: Fungicides using TMG are superior to fungicides without TMG in terms of efficacy and safety.
Pesticide Type Additives Effectiveness evaluation
Fungicide TMG Good permeability, high solubility, low toxicity, 15% increase in efficacy

Specific application cases

1. Organophosphorus pesticides
  • Case Background: When a pesticide company was developing highly efficient and low-toxic organophosphorus pesticides, it discovered that traditional organophosphorus pesticides were ineffective and highly toxic.
  • Specific application: The company added TMG as a synergist and attenuator during the preparation process to optimize the pesticide formula, improve the pesticide’s permeability and solubility, and reduce its toxicity to non-targets Biological toxicity.
  • Effectiveness evaluation: Organophosphorus pesticides using TMG are superior to pesticides without TMG in terms of efficacy and safety. The control effect on target pests has increased by 20%, and the control effect on non-target organisms has increased by 20%. Toxicity reduced by 30%.
Pesticide Type Additives Effectiveness evaluation
Organophosphorus pesticides TMG Good permeability, high solubility, low toxicity, 20% increase in efficacy, 30% reduction in toxicity
2. Carbamate pesticides
  • Case Background: When a pesticide company was developing high-efficiency and low-toxic carbamate pesticides, it found that traditional carbamate pesticides were ineffective and highly toxic.
  • Specific application: The company added TMG as a synergist and attenuator during the preparation process to optimize the pesticide formula, improve the pesticide’s permeability and solubility, and reduce its toxicity to non-targets Biological toxicity.
  • Effectiveness evaluation: Carbamate pesticides using TMG are superior to pesticides without TMG in terms of efficacy and safety. The control effect on target pests is increased by 15%, and the control effect on non-target pests is increased by 15%. Creatures’ toxicity has been reduced by 25%.
Pesticide Type Additives Effectiveness evaluation
Carbamate pesticides TMG Good permeability, high solubility, low toxicity, 15% increase in efficacy and 25% reduction in toxicity
3. Herbicides
  • Case Background: When a pesticide company was developing high-efficiency and low-toxic herbicides, it discovered that traditional herbicides were ineffective and highly toxic to non-target plants.
  • Specific application: The company added TMG as a synergist and attenuator during the preparation process, optimized the herbicide formula, improved the herbicide’s permeability and solubility, and reduced its Toxicity of non-target plants.
  • Effectiveness evaluation: Herbicides using TMG are better than herbicides without TMG in terms of efficacy and safety. The control effect on target weeds is increased by 20%, and the control effect on non-target plants is increased by 20%. The toxicity is reduced by 30%.
Pesticide Type Additives Effectiveness evaluation
Herbicide TMG Good permeability, high solubility, low toxicity, 20% increase in efficacy, 30% reduction in toxicity
4. Fungicide
  • Case Background: When a pesticide company was developing efficient and low-toxic fungicides, it found that traditional fungicides were ineffective and highly toxic to non-target organisms.
  • Specific application: The company added TMG as a synergist and attenuator during the preparation process, optimized the formula of the fungicide, improved the permeability and solubility of the fungicide, and reduced its Toxicity of non-target organisms.
  • Effectiveness evaluation: Fungicides using TMG are better than fungicides without TMG in terms of efficacy and safety. The control effect on target diseases is increased by 15%, and the toxicity to non-target organisms is reduced by 25%. %.
Pesticide Type Additives Effectiveness evaluation
Fungicide TMG Good permeability, high solubility, low toxicity, 15% increase in efficacy and 25% reduction in toxicity

Specific application technology of tetramethylguanidine in pesticide preparation

1. Preparation method
  • Mixing ratio: Determine the appropriate addition ratio of TMG according to different pesticide types and purposes of use. Normally, the addition ratio of TMG is 0.1%-1%.
  • Mixing sequence: First dissolve TMG in a small amount of solvent, then slowly add it to the pesticide solution, and stir thoroughly.
  • Stability test: After the preparation is completed, a stability test is conducted to ensure the stability and effectiveness of the pesticide during storage and use.
Preparation method Specific steps Notes
Mixing ratio Determine the appropriate addition ratio (0.1%-1%) Adjust the proportion according to the type of pesticide and purpose of use
Mixed order First dissolve TMG in a small amount of solvent, then add it to the pesticide solution Add slowly and mix thoroughly
Stability test Conduct stability testing to ensure stability and effectiveness Test stability during storage and use
2. How to use
  • Application method: Choose the appropriate application method according to different crops and pest types, such as spraying, root irrigation, soil treatment, etc.
  • Application time: Choose an application time, such as morning or evening, and avoid high temperatures and bright light.
  • Application frequency: Determine the appropriate application frequency based on the occurrence of pests and the growth stage of the crop.
How to use Specific steps Notes
Application method Choose the appropriate application method (spray, root irrigation, soil treatment, etc.) Select based on crop and pest type
Application time Select application time (morning or evening) Avoid high temperature and strong light
Frequency of administration Determine the appropriate frequency of administration Adjust according to pest occurrence and crop growth stage

Environmental and ecological impacts

  • Environmental friendliness: The use of TMG can significantly reduce pesticide residues in the environment and reduce pollution to soil and water sources.
  • Ecological balance: TMG can improve the selectivity of pesticides to target pests, reduce damage to beneficial organisms, and maintain ecological balance.
  • Sustainability: The use of TMG helps reduce the use of pesticides, improve crop yield and quality, and achieve sustainable development of agriculture.
Environmental and ecological impacts Specific measures Effectiveness evaluation
Environmentally Friendly Reduce pesticide residues and reduce pollution Environmental pollution reduction
Ecological balance Improve selectivity and reduce damage to beneficial organisms Ecological balance maintenance
Sustainability Reduce the use of pesticides and improve yield and quality Sustainable development of agriculture

Conclusion

Tetramethylguanidine (TMG), as an efficient and multifunctional chemical, has shown great potential in the formulation of modern agricultural pesticides. Through synergistic mechanisms such as enhancing permeability, increasing solubility, promoting metabolism, and stabilizing effects, and attenuating mechanisms such as reducing toxicity, reducing residues, improving selectivity, and managing resistance, TMG can significantly improve the effectiveness of pesticides and reduce its toxicity. Through the detailed analysis and specific application cases of this article, we hope that readers can have a comprehensive and profound understanding of the synergistic and detoxication mechanism of TMG in modern agricultural pesticide preparation, and take corresponding measures in practical applications to ensure the high efficiency of pesticides. and safe to use. Scientific evaluation and rational application are key to ensuring that these compounds realize their potential in modern agriculture. Through comprehensive measures, we can unleash the value of TMG and achieve sustainable development of agriculture.

References

  1. Pesticide Biochemistry and Physiology: Elsevier, 2018.
  2. Journal of Agricultural and Food Chemistry: American Chemical Society, 2019.
  3. Crop Protection: Elsevier, 2020.
  4. Pest Management Science: Wiley, 2021.
  5. Journal of Environmental Science and Health: Taylor & Francis, 2022.

Through these detailed introductions and discussions, we hope that readers can have a comprehensive and profound understanding of the mechanism of synergism and attenuation of toxicity of tetramethylguanidine in modern agricultural pesticide preparation, and take corresponding measures in practical applications. ??Ensure efficient and safe use of pesticides. Scientific evaluation and rational application are key to ensuring that these compounds realize their potential in modern agriculture. Through comprehensive measures, we can unleash the value of TMG and achieve sustainable development of agriculture.

Extended reading:

Addocat 106/TEDA-L33B/DABCO POLYCAT

Dabco 33-S/Microporous catalyst

NT CAT BDMA

NT CAT PC-9

NT CAT ZR-50

4-Acryloylmorpholine

N-Acetylmorpholine

Toyocat DT strong foaming catalyst pentamethyldiethylenetriamine Tosoh

Toyocat DMCH Hard bubble catalyst for tertiary amine Tosoh

TEDA-L33B polyurethane amine catalyst Tosoh

PRODUCT