Synthesis of polyaniline

There are many synthesis methods for polyaniline, but the commonly used synthesis methods are two categories: chemical synthesis and electrochemical synthesis.
(1) Chemical synthesis method Chemical synthesis method is to use oxidant as initiator to make aniline monomer oxidative polymerisation in acidic medium, the specific implementation methods are as follows.
Chemical oxidative polymerisation The chemical oxidative polymerisation of polyaniline is to make the aniline monomer oxidatively polymerised by oxidising agent under acidic condition. Protonic acid is an important factor affecting the oxidative polymerisation of aniline, which mainly plays two roles: to provide the pH value of the reaction medium and the form of dopant into the polyaniline skeleton to give it a certain conductivity. Polymerisation is carried out simultaneously with on-site doping, and polymerisation and doping are completed simultaneously. Commonly used oxidising agents are: hydrogen peroxide, dichromate, persulfate, etc. Its synthesis reaction is mainly affected by the type and concentration of protonated acid, the type and concentration of oxidant, the concentration of monomer and the reaction temperature, reaction time and other factors. The advantages of chemical oxidation polymerisation are that it can produce polyaniline in large quantities, with low investment in equipment, simple process, suitable for industrial production, and it is the most commonly used synthesis method at present.
Emulsion polymerisation Emulsion polymerisation is a method of adding an initiator into an acidic emulsion system containing aniline and its derivatives. Emulsion polymerisation has the following advantages: environmentally friendly and low-cost water is used as the heat carrier, and the product does not need to be precipitated and separated to remove the solvent; the synthesised polyaniline has a higher molecular weight and solubility; if large molecules of sulfonic acid are used as the surfactant, doping can be completed in a single step to increase the conductivity of the conductive polyaniline; polyaniline can be made into an emulsion that is directly usable, so that the subsequent processing does not need to use expensive or toxic organic solvents, simplifying the process and making it easier to produce polyaniline. Organic solvents, simplify the process, reduce costs, but also to overcome the shortcomings of the traditional method of synthesis of polyaniline insoluble and non-melting.
Microemulsion polymerisation Microemulsion polymerisation is developed on the basis of emulsion method. The polymerisation system consists of water, aniline, surfactant and co-surfactant. The microemulsion dispersed phase droplet size (10~100 nm) is smaller than that of normal emulsion (10~200 nm), which is very favourable for the synthesis of nanoscale polyaniline. The nano-polyaniline particles may not only solve the defects of difficult processing and moulding, but also combine the polymer electrical conductivity and the unique physicochemical properties of nano-particles, therefore, the microemulsion method has become a research hotspot in the field since the first report of synthesizing polyaniline particles with the smallest particle size of 5 nm using this method in 1997. Currently, conventional O/W microemulsions are used for the synthesis of polyaniline nanoparticles, and the commonly used surfactants are DBSA, sodium dodecyl sulfate, etc., with particle sizes of about 10-40 nm. reversed-phase microemulsions (W/O) are used for the preparation of polyaniline nanoparticles, which can obtain smaller particle sizes (<10 nm), and a more uniform distribution of the particle sizes. This is due to the fact that fewer aniline monomers are dissolved in the aqueous core of the reversed-phase microemulsion than in the oil core of the conventional microemulsion.
Dispersion polymerisation The aniline dispersion polymerisation system is generally composed of aniline monomer, water, dispersant, stabiliser and initiator. The medium before the reaction is a homogeneous system, but the generated polyaniline is insoluble in the medium, when it reaches the critical chain length from the medium precipitation, with the help of stabilizers suspended in the medium, the formation of a stable dispersion system similar to the polymer emulsion. This method is currently used in the synthesis of polyaniline research is far less mature than the above three implementation methods, less research.
Mature, less research.
(2) Electrochemical synthesis method The electrochemical polymerisation of polyaniline includes the following methods: constant potential method, constant current method, dynamic potential scanning method and pulse polarisation method. Generally An is polymerised in acidic solution at the anode. Electrochemical synthesis of polyaniline is the oxidative polymerisation of An at the anode in an electrolyte solution containing An, resulting in a polyaniline film adhering to the electrode surface or a polyaniline powder deposited on the electrode surface.Diaz et al. prepared polyaniline films by electrochemical methods.
At present, PANI electrochromic films are mainly prepared by electrochemical methods, but there are several drawbacks in the preparation of PANI electrochromic films by electrochemical methods, such as: the inability to prepare electrochromic films on a large scale; the poor mechanical properties of the PANI film; and the poor adhesion of the PANI film to the conductive glass substrate.

Extended Reading?

PC-37 – Amine Catalysts (newtopchem.com)

Dabco foaming catalyst/polyurethane foaming catalyst NE300 – Amine Catalysts (newtopchem.com)

DABCO EG/PC CAT TD 33EG/Niax A-533 – Amine Catalysts (newtopchem.com)

FASCAT4100 catalyst – Amine Catalysts (newtopchem.com)

T120 1185-81-5 di(dodecylthio) dibutyltin – Amine Catalysts (newtopchem.com)

DABCO 1027/foaming retarder – Amine Catalysts (newtopchem.com)

DBU – Amine Catalysts (newtopchem.com)

bismuth neodecanoate/CAS 251-964-6 – Amine Catalysts (newtopchem.com)

stannous neodecanoate catalysts – Amine Catalysts (newtopchem.com)

polyurethane tertiary amine catalyst/Dabco 2039 catalyst – Amine Catalysts (newtopchem.com)

Method for preparing calcium propionate from calcium carbonate

Method for preparing calcium propionate from calcium carbonate

Image keywords Image keywords

Calcium propionate is white crystalline particles or crystalline powder. It is odorless or slightly smells of propionic acid, hygroscopic, easily soluble in water, and insoluble in alcohol. Calcium propionate is a newer food antifungal agent. It is the calcium salt of the acidic antifungal agent propionic acid. Under acidic conditions, it produces free propionic acid, which is weaker than sorbic acid and stronger than acetic acid. It has antibacterial effects and is effective against Aspergillus niger and Aspergillus niger. Aerophilic Bacillus has inhibitory effect. Calcium propionate is produced by reacting propionic acid with calcium hydroxide or calcium carbonate. In industry, calcium hydroxide is generally used as raw material. Calcium hydroxide is adjusted into a suspension in a reaction pot, propionic acid is added to react, the end point pH is 7~8, and the finished product is obtained after filtration and drying.

The method of preparing calcium propionate from calcium carbonate is as follows:

First, the raw material calcium carbonate is made into a water suspension, and the water used must be refined and purified. Remove impurities such as heavy metal magnesium. Put the CaCO3 aqueous suspension quantitatively into the neutralization reaction kettle, keep the temperature inside the kettle at 60-80°C, and add propionic acid while stirring. The neutralization reaction lasts for 2-3 hours. At this time, a large amount of CO2 gas escapes. Discharge through the condenser vent pipe. By adjusting the external heating temperature, adding acid and stirring speed, the reaction can reach optimal conditions. The pH value at the end of the reaction should be controlled at 7 to 8. This reaction is a reversible reaction. The CO2 gas should be discharged in time to better control the end of the reaction. . The neutralized aqueous solution is vacuum filtered, and the filtrate obtained is concentrated in an evaporator, and then placed in a crystallization tank for slow cooling and crystallization at normal temperature and pressure. The mother liquor can be returned to the evaporator and used 2 to 3 times before discarding. The separated solid is dried into small particles, crushed, measured, and packaged to obtain the finished product of calcium propionate.
amine catalyst Dabco 8154 – BDMAEE

2-ethylhexanoic-acid-potassium-CAS-3164-85-0-Dabco-K-15.pdf (bdmaee.net)

Dabco BL-11 catalyst CAS3033-62-3 Evonik Germany – BDMAEE

Polycat 9 catalyst CAS33329-35-6 Evonik Germany.pdf – BDMAEE

Dabco NE300 catalyst CAS10861-07-1 Evonik Germany.pdf (bdmaee.net)

Dabco 1027 Catalyst CAS100515-55-5 Evonik Germany – BDMAEE

Fomrez UL-28 Catalyst Dimethyltin Dioctadecanoate Momentive – BDMAEE

Polycat 77 catalyst CAS3855-32-1 Evonik Germany.pdf (bdmaee.net)

Polycat 41 catalyst CAS10294-43-5 Evonik Germany – BDMAEE

Polycat DBU catalyst CAS6674-22-2 Evonik Germany – BDMAEE

Low Odor Polyurethane Rigid Foam Catalysts: Enhancing Indoor Air Quality and Comfort in Insulation Applications

Low Odor Polyurethane Rigid Foam Catalysts: Enhancing Indoor Air Quality and Comfort in Insulation Applications

Polyurethane (PU) rigid foam is a widely used insulation material, known for its excellent thermal performance and energy efficiency. However, the production and use of traditional PU rigid foam can result in the emission of volatile organic compounds (VOCs) and unpleasant odors, which can negatively impact indoor air quality and human comfort. To address these concerns, the development of low odor polyurethane rigid foam catalysts has emerged as a promising solution. This article will discuss the importance of low odor PU rigid foam catalysts, their benefits, and their role in promoting healthier and more comfortable indoor environments.

 

The Need for Low Odor Polyurethane Rigid Foam Catalysts
Traditional PU rigid foam insulation is produced by reacting polyols and isocyanates in the presence of catalysts, blowing agents, and other additives. During this process, residual chemicals and byproducts can emit VOCs and unpleasant odors, which can persist even after the foam has been installed. Exposure to these emissions can cause various health issues, such as eye, nose, and throat irritation, headaches, and respiratory problems. Moreover, the presence of unpleasant odors can negatively affect human comfort and overall satisfaction with the insulation material.

 

To mitigate these issues, the development of low odor PU rigid foam catalysts has become a key focus in the insulation industry. These catalysts are designed to minimize the emission of VOCs and odors during the production and use of PU rigid foam, ultimately improving indoor air quality and human comfort.

 

Benefits of Low Odor Polyurethane Rigid Foam Catalysts
Improved Indoor Air Quality: Low odor PU rigid foam catalysts significantly reduce the emission of VOCs and unpleasant odors, contributing to healthier and cleaner indoor environments. This is particularly important in sensitive applications, such as schools, hospitals, and residential buildings, where maintaining good indoor air quality is crucial for occupant health and well-being.
Enhanced Comfort: By minimizing unpleasant odors, low odor PU rigid foam catalysts help create more comfortable living and working spaces. This can lead to increased occupant satisfaction and improved overall perception of the insulation material.

Compliance with Regulations and Standards: As concerns over indoor air quality and VOC emissions continue to grow, various regulations and standards have been established to limit the emission of harmful substances from building materials. The use of low odor PU rigid foam catalysts helps manufacturers comply with these requirements, ensuring the production of safer and more environmentally friendly insulation products.
Market Differentiation: By offering low odor PU rigid foam insulation, manufacturers can differentiate their products in the competitive insulation market. This can lead to increased demand and customer loyalty, as consumers become more aware of the importance of indoor air quality and odor control.
Examples of Low Odor Polyurethane Rigid Foam Catalysts
Several low odor PU rigid foam catalysts have been developed in recent years, each with its unique formulation and performance characteristics. Some examples include:
Amine Catalysts: Traditional amine catalysts, such as triethylenediamine (TEDA) and dimethylcyclohexylamine (DMCHA), can be replaced with low odor alternatives, such as N,N-dimethylcyclohexylamine (DMCA) and 1-methylcyclohexylamine (MCHA). These catalysts offer similar performance to their traditional counterparts but with significantly reduced odor and VOC emissions.
Metal Catalysts: Metal-based catalysts, such as tin and bismuth octoates, can also be formulated to have low odor properties. These catalysts are often used in combination with amine catalysts to achieve optimal curing and foam performance while minimizing odor and VOC emissions.
Glycerin-Based Catalysts: Glycerin-based catalysts, such as glycerin-derived polyols, can be used as a replacement for traditional polyols in PU rigid foam production. These catalysts offer reduced odor and VOC emissions, as well as improved sustainability due to their renewable origin.
In conclusion, low odor polyurethane rigid foam catalysts play a crucial role in addressing concerns related to indoor air quality and human comfort in insulation applications. By minimizing the emission of VOCs and unpleasant odors, these catalysts contribute to healthier and more comfortable indoor environments, while also helping manufacturers comply with regulations and differentiate their products in the market. As the demand for safer and more sustainable insulation materials continues to grow, the development and adoption of low odor PU rigid foam catalysts are expected to gain further momentum in the insulation industry.
Recommended Related Reading:

TEDA-L25B polyurethane tertiary amine catalyst Tosoh

Toyocat DAEM Catalyst Tosoh

Toyocat DMCH Hard bubble catalyst for tertiary amine Tosoh

Toyocat DMI gel catalyst Tosoh

Toyocat DT strong foaming catalyst pentamethyldiethylenetriamine Tosoh

Toyocat ET catalyst Tosoh

Toyocat ETS Foaming catalyst Tosoh

https://www.bdmaee.net/toyocat-mr-gel-balanced-catalyst-tetramethylhexamethylenediamine-tosoh/
https://www.bdmaee.net/toyocat-np-catalyst-tosoh/

PRODUCT