neopentyl alcohol

Neopentyl alcohol structural formulaNeopentyl alcohol structural formula

Structural formula

Business number 01K8
Molecular formula C5H12O
Molecular weight 88.15
label

2,2-Methyl-1-propanol,

tert-butylmethanol,

tert-Butyl carbinol,

2,2-Dimethylpropanol,

Neopentanol,

Neopentyl alcohol,

alcohol solvents,

aliphatic compounds

Numbering system

CAS number:75-84-3

MDL number:MFCD00004682

EINECS number:200-907-3

RTECS number:None

BRN number:1730984

PubChem number:24865983

Physical property data

1. Properties: colorless crystals with mint smell.

2. Density (g/mL, 20?): 0.811

3. Solubility parameter (J·cm-3)0.5 : 19.265

4. Melting point (ºC): 52.5

5. Boiling point (ºC, normal pressure): 113~114

6. van der Waals area (cm2·mol-1): 9.170×109

7. Refractive index ( 50ºC): 1.3915

8. Flash point (ºC, closed): 36

9. van der Waals volume (cm3·mol -1): 62.610

10. Gas phase standard entropy (J·mol-1·K-1): 366.85 p>

11. Liquid phase standard combustion heat (enthalpy) (kJ·mol-1): -3283.2

12. Liquid phase standard claimed heat (enthalpy) ( kJ·mol-1): -399.4

13. Liquid phase standard entropy (J·mol-1·K-1): 229.3

14. Liquid phase standard free energy of formation (kJ·mol-1): -175.23

15. Critical pressure ( KPa): Undetermined

16. Log value of oil-water (octanol/water) partition coefficient: Undetermined

17. Explosion upper limit (%, V/V): Undetermined

18. Lower explosion limit (%, V/V): Undetermined

19. Solubility (%, water, 20ºC): 0.039

20. Dissolution Properties: Slightly soluble in water, miscible with many organic solvents such as alcohols, ethers, ketones, esters and aromatic hydrocarbons, and also miscible with mineral oil and vegetable oil.

Toxicological data

None

Ecological data

None

Molecular structure data

1. Molar refractive index: 26.71

2. Molar volume (cm3/mol): 108.6

3. Isotonic specific volume (90.2K ):242.9

4. Surface tension (dyne/cm): 25.0

5. Polarizability (10-24cm3) :10.59

Compute chemical data

1. Reference value for hydrophobic parameter calculation (XlogP): None

2. Number of hydrogen bond donors: 1

3. Number of hydrogen bond acceptors: 1

4. Number of rotatable chemical bonds: 1

5. Number of tautomers: none

6. Topological molecule polar surface area 20.2

7. Number of heavy atoms: 6

8. Surface charge: 0

9. Complexity: 33.7

10. Number of isotope atoms: 0

11. Determine the number of atomic stereocenters: 0

12. Uncertain number of atomic stereocenters: 0

13. Determine the number of chemical bond stereocenters: 0

14. Number of uncertain chemical bond stereocenters: 0

15. Number of covalent bond units: 1

Properties and stability

1. It has the chemical reactivity of primary alcohols. Highly flammable. When using, avoid inhaling the dust of this product and avoid contact with eyes and skin.

2. Exist in smoke.

Storage method

This product should be sealed and stored in a cool place.

Synthesis method

1. Preparation method:

In a reaction bottle equipped with a stirrer, thermometer, and dropping funnel, add 800g of 30% hydrogen peroxide, cool it in an ice bath, and add dropwise a dilute solution composed of 800g of concentrated sulfuric acid and 310g of crushed ice while stirring and cool it to below 10°C. For sulfuric acid, control it at 5-10°C and finish adding it in about 20 minutes. Then, 224.4g (2.0mol) of 2,4,4-trimethyl-1-pentene (2) was added dropwise, and the addition was completed in 5 to 10 seconds. Remove the ice bath and stir the reaction at 25°C for 24 hours. Separate the organic layer and cool it in an ice bath, add 500g of 70% sulfuric acid dropwise with vigorous stirring, and keep the internal temperature at 15 to 25°C, which will take about 67 to 75 minutes. After the addition is completed, stir at 5 to 10°C for 30 minutes. Leave to stand for 1 to 3 hours, separate the organic layer, pour into 1000 mL of water, and distill under normal pressure (foam may appear, and distillation can be stopped at this time). After cooling the distilled liquid, separate the organic layer, dry it over anhydrous sodium sulfate?, fractionate, collect the fractions between 111 and 113°C to obtain 2,2-dimethyl-1-propanol ?(1) 60?70, yield 34%?40%. Note: ? Dry thoroughly before distillation, otherwise the product will form an azeotrope (80~85?) with water, which will affect the yield. ? This reaction is similar to the hydrogen peroxide oxidation of ethyl-propyl benzene to produce phenol and acetone. Under acidic conditions, the peroxide is rearranged to produce alcohol and acetone. [1]

Purpose

Solvent, raw material for organic synthesis. ?

extended-reading:https://www.bdmaee.net/dimethylethanolamine/
extended-reading:https://www.newtopchem.com/archives/1885
extended-reading:https://www.bdmaee.net/nt-cat-pc17-catalyst-cas110-18-9-newtopchem/
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/TIB-KAT-129.pdf
extended-reading:https://www.bdmaee.net/cas-1067-33-0-3/
extended-reading:https://www.bdmaee.net/niax-dmee-low-odor-reactive-catalysts-momentive/
extended-reading:https://www.cyclohexylamine.net/dabco-8154-2-ethylhexanoic-acid-solution-of-triethylenediamine/
extended-reading:https://www.newtopchem.com/archives/40238
extended-reading:https://www.bdmaee.net/dabco-r-8020-jeffcat-td-20-teda-a20/
extended-reading:https://www.newtopchem.com/archives/690

Progress on organotin products bis(dodecylthio)

As an important class of organometallic materials, organotin compounds, especially bis(dodecylthio)tin compounds, exhibit unique properties and a wide range of applications in a variety of fields. These compounds not only have excellent thermal stability and corrosion resistance due to the long-chain alkyl sulfur groups in their structures, but also exhibit low toxicity, good biocompatibility, and catalytic activity, and thus have attracted extensive attention from researchers in the fields of plastic stabilizers, catalysts, pesticides, and biomedical materials. The following is a brief overview of the research progress of bis(dodecylthio)tin-based products.

Application of organotin stabilisers in the plastics industry
In the plastics industry, bis(dodecylthio)tin compounds are widely used as heat stabilisers, especially in polyvinyl chloride (PVC) processing. They can effectively inhibit the degradation of PVC due to dehydrogen chloride reaction during high temperature processing or long-term use, thus extending the service life of the products. In recent years, as environmental regulations have become more stringent, researchers are working to develop low-toxicity, high-efficiency alternatives to reduce the environmental and health risks that may be associated with traditional tin heat stabilisers. Improving the ecological compatibility of compounds by adjusting the molecular design, e.g. introducing biodegradable groups, is an important direction of current research.

Innovative applications in catalysis
Bis(dodecylthio)tin compounds show great potential as Lewis acid catalysts in organic synthesis due to their unique coordination ability and catalytic properties. They can promote a variety of organic reactions, including esterification and polymerisation reactions, etc. Especially in the field of green chemistry, the search for environmentally friendly catalysts has become a hot topic. Research focuses on how to optimise their catalytic efficiency and selectivity while reducing the generation of by-products for more efficient and sustainable chemical synthesis processes.

New explorations in biomedical materials
Although organotin compounds have relatively few applications in the biomedical field, research in recent years has begun to reveal their potential in antibacterial and anti-tumour applications. Bis(dodecylthio)tin compounds have been investigated as a basis for the design of novel drugs, especially in antifungal drugs and anticancer therapies, due to their specific biological activities. By precisely modulating the structure of organotin molecules, scientists aim to develop novel drug candidates that are both effective in killing pathogens and less toxic to normal cells.

Environmental impact and sustainability
Considering the potential impacts that organotin compounds may have on the environment and ecosystems, in particular the bioaccumulation and persistence of some organotin compounds, research on their environmental behaviour and ecotoxicology is also receiving increasing attention. Scientists are endeavouring to develop more environmentally friendly alternatives and to promote the development of organotin-based products in a more sustainable direction by comprehensively evaluating the environmental impacts of these materials from production to disposal through life cycle assessment.

Conclusion
In summary, the progress of research on bis(dodecylthio)tin products shows that through continuous optimisation of molecular structure and properties, these organotin compounds are gradually overcoming environmental and safety challenges while maintaining their original advantages, and moving towards greener, more efficient and multifunctional directions. Future research will focus more on balancing environmental friendliness, biocompatibility and high performance to meet the demand for high-quality materials in different fields, while protecting the Earth’s ecological environment and promoting sustainable development.
extended reading?

NT CAT DMDEE

NT CAT PC-5

NT CAT DMP-30

NT CAT DMEA

NT CAT BDMA

DMCHA – Amine Catalysts (newtopchem.com)

Dioctyltin dilaurate (DOTDL) – Amine Catalysts (newtopchem.com)

Polycat 12 – Amine Catalysts (newtopchem.com)

N-Methylmorpholine

4-Formylmorpholine

Suppliers of Bis(dodecylthio)dimethyltin

Finding reliable suppliers of bis(dodecylthio)dimethyltin involves meticulous research of manufacturers, distributors and chemical trading platforms in the market. Below are a few key steps and recommended channels to help you effectively enquire and target suitable suppliers:

1. Use professional chemical platforms
GaiderChem.com: As a well-known chemical information and trading website, GaiderChem.com provides a wealth of supplier resources, including information on many suppliers of bis(dodecylthio)dimethyltin, such as price, specification, company reputation, etc. Users can filter suppliers according to their needs and directly ask for quotations online or contact suppliers.
2. Browse the websites of leading companies in the industry
Kramer Shanghai: Based on previous records, Kramer Shanghai offers a wide range of organotin compounds, including similar products. Visiting its official website, you can enquire about the supply of dimethyltin disulfide isooctyl acetate and other products, and make use of its sales hotline or enterprise QQ to communicate directly and get the latest supply information and quotations.
3. Alibaba Chemical Market
Alibaba has a large number of chemical suppliers, enter the keyword “bis(dodecylthio)dimethyltin”, you can find the corresponding supplier list. The platform usually displays suppliers’ credit ratings, transaction records, contact information, etc., which makes it easy for buyers to compare and choose. Remember to check the qualifications of the suppliers, such as whether they have passed the ISO quality management system certification to ensure product quality.
4. Directly contact the manufacturer
Although Hubei Dongcao Chemical Technology Co., Ltd. and Hubei Nona Technology Co., Ltd. do not directly mention bis(dodecylthio)dimethyltin, they may have production lines of related products or be able to provide customised services as professional chemical manufacturers. A direct visit to the company’s official website or enquiry by phone or email may reveal specific product information they can provide.
5. Consider customised services
If standard products do not meet specific needs, consider contacting a supplier like Xinden Chemical Materials (Shanghai) Co. Ltd. who offers a wide range of organostannic compounds, including thiomethyltin, has customised production capabilities, and may be able to produce bis(dodecylthio)dimethyltin according to your requirements.
Things to consider when making enquiries:
Verify supplier qualifications: Confirm whether the supplier has a legal business licence, safety production permit and environmental qualifications, etc.
Quality standards: Ask about product purity and test reports to ensure compliance with industry standards or specific application requirements.
Price and payment terms: Compare the offers of different suppliers and find out the minimum order quantity, payment methods and transport costs.
After-sales service: Understand the supplier’s return and exchange policy and technical support capability.
Through the above channels, you can systematically collect information, compare and select the bis(dodecylthio)dimethyltin supplier that best meets your needs. Remember to make full communication and confirmation before the transaction to ensure the smooth procurement process.

extended reading?

NT CAT DMDEE

NT CAT PC-5

NT CAT DMP-30

NT CAT DMEA

NT CAT BDMA

DMCHA – Amine Catalysts (newtopchem.com)

Dioctyltin dilaurate (DOTDL) – Amine Catalysts (newtopchem.com)

Polycat 12 – Amine Catalysts (newtopchem.com)

N-Methylmorpholine

4-Formylmorpholine

17980818283459