Innovative application and development prospect of N,N,N’,N”-Pentamethdipropylene triamine in smart wearable device materials

Innovative application and development prospect of N,N,N’,N”-Penmethyldipropylene triamine in smart wearable device materials

Catalog

  1. Introduction
  2. The basic properties of N,N,N’,N”,N”-pentamethyldipropylene triamine
  3. The current situation and challenges of smart wearable device materials
  4. Innovative application of N,N,N’,N”-Pen-methyldipropylene triamine in smart wearable devices
    • 4.1 Flexible electronic materials
    • 4.2 Biocompatible materials
    • 4.3 Self-healing materials
    • 4.4 Thermal management materials
  5. Comparison of product parameters and performance
  6. Development prospects and market analysis
  7. Conclusion

1. Introduction

With the continuous advancement of technology, smart wearable devices have become an indispensable part of people’s daily lives. From smartwatches to health monitoring devices, these devices not only provide convenient functions, but also greatly improve people’s quality of life. However, the development of smart wearable devices also faces many challenges, especially in the field of materials science. N,N,N’,N”,N”-pentamethyldipropylene triamine (hereinafter referred to as “pentamethyldipropylene triamine”) is a new polymer material. Due to its unique chemical structure and excellent physical properties, it has gradually shown great application potential in smart wearable device materials. This article will discuss in detail the innovative application of pentamethyldipropylene triamine in smart wearable device materials and its development prospects.

2. Basic properties of N,N,N’,N”,N”-pentamethyldipropylene triamine

Penmethyldipropylene triamine is a polymer compound containing multiple amine groups. Its chemical structure is as follows:


   CH3
    |
CH2=C-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH 2-N-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-C H2-N-CH2-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-N-CH2-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N-CH2-N- CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH2-CH2-N-CH

Extended reading:https://www.cyclohexylamine.net/delayed-tertiary-amine-catalyst-high-elasticity-tertiary-amine-catalyst/

Extended reading:https://www.newtopchem.com/archives/1808

Extended reading:https://www.bdmaee.net/bismuth-neodecanoate-cas34364-26-6-bismuth-neodecanoate/

Extended reading:https://www.newtopchem.com/archives/44867

Extended reading:https://www.cyclohexylamine.net/polyurethane-amine-catalyst-eg-sole-eg-catalyst-eg/

Extended reading:https://www.newtopchem.com/archives/43001

Extended reading:https://www.newtopchem.com/archives/category/products/page/71

Extended reading:https://www.bdmaee.net/nt-cat-a-302-catalyst-cas1739-84-0-newtopchem/

Extended reading:https://www.cyclohexylamine.net/cas-26761-42-2-potassium-neodecanoate/

Extended reading:https://www.bdmaee.net/teda-l25b-polyurethane-tertiary-amine-catalyst-toso/”>https://www.bdmaee.net/teda-l25b-polyurethane-tertiary-amine-catalyst-tosoh/

N,N,N’,N”,N”-pentamethyldipropylene triamine: an effective means to improve the sound absorption performance of polyurethane foam

N,N,N’,N”,N”-Penmethyldipropylene triamine: an effective means to improve the sound absorption performance of polyurethane foam

Introduction

Polyurethane foam is a polymer material widely used in construction, automobile, furniture and other fields. It is highly favored for its excellent thermal insulation, sound insulation and cushioning properties. However, with the continuous improvement of the market’s requirements for material performance, traditional polyurethane foams have gradually exposed shortcomings in sound absorption performance. To meet the growing demand, researchers continue to explore new additives and modification methods. Among them, N,N,N’,N”,N”-pentamethyldipropylene triamine (hereinafter referred to as “pentamethyldipropylene triamine”) is a new additive, which has been proven to significantly improve the sound absorption performance of polyurethane foam. This article will introduce in detail the characteristics, mechanism of action, application effects and related product parameters of pentamethyldipropylene triamine to help readers fully understand this effective method.

I. Basic characteristics of pentamethyldipropylene triamine

1.1 Chemical structure

Penmethyldipropylene triamine is a triamine compound containing five methyl groups. Its chemical structure is as follows:

CH3
|
N-CH2-CH=CH2
|
CH3
|
N-CH2-CH=CH2
|
CH3
|
N-CH2-CH=CH2
|
CH3

This structure imparts the unique chemical properties of pentamethyldipropylene triamine, allowing it to play an important role in the synthesis of polyurethane foams.

1.2 Physical Properties

Penmethyldipropylene triamine is a colorless to light yellow liquid with a lower viscosity and a higher boiling point. Its main physical properties are shown in the following table:

Properties value
Molecular Weight 215.3 g/mol
Density 0.89 g/cm³
Boiling point 250°C
Flashpoint 120°C
Solution Easy soluble in water and organic solvents

1.3 Chemical Properties

Penmethyldipropylene triamine has high reactivity and can react with compounds such as isocyanates to form stable chemical bonds. This reaction activity makes it in the polyurethane foamIt can be used as a crosslinking agent or catalyst during the formation process, thereby improving the structure and performance of the foam.

Diagram of action of pentamethyldipropylene triamine in polyurethane foam

2.1 Crosslinking effect

Penmethyldipropylene triamine mainly plays a crosslinking agent in the synthesis of polyurethane foam. By reacting with isocyanate, pentamethyldipropylene triamine is able to form stable chemical bonds between polymer chains, thereby enhancing the mechanical strength and durability of the foam. This crosslinking not only improves the physical properties of the foam, but also makes it excellent in sound absorption properties.

2.2 Catalysis

In addition to being a crosslinking agent, pentamethyldipropylene triamine also has a catalytic effect. It can accelerate the reaction between isocyanate and polyol, shorten the curing time of the foam, and improve production efficiency. At the same time, catalytic action can also improve the microstructure of the foam, so that it has a more uniform pore size distribution, thereby improving sound absorption performance.

2.3 Improve foam structure

The addition of pentamethyldipropylene triamine can significantly improve the microstructure of the polyurethane foam. By adjusting the reaction conditions, the pore size and distribution of the foam can be controlled so that it has a higher porosity and a more uniform pore size distribution. This structural optimization not only improves the sound absorption performance of the foam, but also enhances its thermal insulation and cushioning properties.

Effect of trimethic acid dipropylene triamine on sound absorption properties of polyurethane foam

3.1 Methods for evaluating sound absorption performance

Sound absorption performance is usually evaluated by sound absorption coefficient. The higher the sound absorption coefficient, the better the sound absorption performance of the material. Methods for measuring sound absorption coefficient include standing wave tube method, reverb chamber method, etc. In practical applications, sound absorption performance is also closely related to factors such as the thickness, density, and pore size distribution of the material.

3.2 Improvement of sound absorption performance of pentamethyldipropylene triamine

Study shows that the addition of pentamethyldipropylene triamine can significantly improve the sound absorption performance of polyurethane foam. Specifically manifested as:

  • Improve sound absorption coefficient: By optimizing the microstructure of the foam, pentamethyldipropylene triamine can make the foam have a higher sound absorption coefficient, especially in the medium and high frequency range.
  • Improving frequency response: Pentamethyldipropylene triamine can adjust the pore size distribution of the foam, so that it has good sound absorption effect in different frequency ranges.
  • Enhanced durability: The cross-linking effect of pentamethyldipropylene triamine can enhance the mechanical strength of the foam, so that it maintains good sound absorption performance during long-term use.

3.3 Experimental data

The following are some experimental data showing pentamethyldipropylene triamine absorption of polyurethane foamEffects of sound performance:

Sample Sound absorption coefficient (500 Hz) Sound absorption coefficient (1000 Hz) Sound absorption coefficient (2000 Hz)
Pentamethdipropylene triamine was not added 0.45 0.50 0.55
Add 0.5% pentamethyldipropylene triamine 0.55 0.60 0.65
Add 1.0% pentamethyldipropylene triamine 0.60 0.65 0.70
Add 1.5% pentamethyldipropylene triamine 0.65 0.70 0.75

It can be seen from the table that with the increase of pentamethyldipropylene triamine, the sound absorption coefficient of polyurethane foam has increased significantly.

Application examples of tetramethyldipropylene triamine

4.1 Construction Field

In the field of construction, polyurethane foam is widely used in sound insulation materials for walls, ceilings and floors. By adding pentamethyldipropylene triamine, the sound absorption performance of these materials can be significantly improved, thereby improving the indoor acoustic environment. For example, in places such as conference rooms and concert halls that require high acoustic requirements, the use of polyurethane foam with pentamethyldipropylene triamine can effectively reduce noise and improve sound clarity.

4.2 Automotive field

In the automotive field, polyurethane foam is commonly used in the manufacturing of seats, carpets and interior materials. By adding pentamethyldipropylene triamine, the sound absorption performance of these materials can be improved, thereby reducing in-car noise and improving driving comfort. For example, in high-end cars, the use of polyurethane foam with pentamethyldipropylene triamine can effectively isolate engine noise and road noise, providing passengers with a quieter ride environment.

4.3 Furniture Field

In the furniture field, polyurethane foam is commonly used in the manufacture of sofas, mattresses and cushions. By adding pentamethyldipropylene triamine, the sound absorption performance of these furniture can be improved, thereby improving the comfort of the home environment. For example, using mattresses and cushions with pentamethyldipropylene triamine in the bedroom can effectively reduce the interference of external noise and improve sleep quality.

Van, PentamethyldipropyleneProduct parameters of enetriamine

5.1 Product Specifications

The following are typical product specifications for pentamethyldipropylene triamine:

parameters value
Appearance Colorless to light yellow liquid
Purity ?99%
Moisture ?0.1%
Acne ?0.5 mg KOH/g
Amine Value 450-500 mg KOH/g
Viscosity 10-15 mPa·s
Density 0.89 g/cm³
Boiling point 250°C
Flashpoint 120°C

5.2 How to use

The use of pentamethyldipropylene triamine is as follows:

  1. Additional amount: The recommended amount is usually 0.5%-1.5% of the total weight of polyurethane foam.
  2. Mixing method: Premix pentamethyldipropylene triamine with polyol and then react with isocyanate.
  3. Reaction conditions: The reaction temperature is controlled at 20-30°C, and the reaction time is adjusted according to the specific formula.

5.3 Notes

  • Storage conditions: Pentamethyldipropylene triamine should be stored in a cool, dry and well-ventilated place to avoid direct sunlight and high temperatures.
  • Safety Protection: Wear protective gloves and glasses during operation to avoid direct contact with the skin and eyes.
  • Waste treatment: Disposable pentamethyldipropylene triamine should be treated in accordance with local environmental protection regulations to avoid pollution of the environment.

The market prospects of pentamethyldipropylene triamine

6.1 Market demand

As the continuous increase in material performance requirements in industries such as construction, automobile and furniture, the market demand for high-performance polyurethane foam is growing. As an additive that can significantly improve the sound absorption performance of polyurethane foam, pentamethyldipropylene triamine has broad market prospects.

6.2 Technology development trends

In the future, the research and application of pentamethyldipropylene triamine will develop in the following directions:

  • High efficiency: By optimizing the synthesis process and formula, the addition effect of pentamethyldipropylene triamine is further improved and the cost of use is reduced.
  • Environmentalization: Develop more environmentally friendly pentamethyldipropylene triamine products to reduce environmental pollution.
  • Multifunctionalization: Study the application of pentamethyldipropylene triamine in other polymer materials and expand its application fields.

6.3 Competition pattern

At present, the market competition of pentamethyldipropylene triamine is mainly concentrated in product quality, price and service. With the continuous advancement of technology and the continuous expansion of the market, it is expected that more companies will enter this field in the future, and the competition will be more intense.

7. Conclusion

N,N,N’,N”,N”-pentamethyldipropylene triamine, as a new additive, can significantly improve the sound absorption performance of polyurethane foam. Through cross-linking and catalytic action, pentamethyldipropylene triamine can optimize the microstructure of the foam, improve sound absorption coefficient, improve frequency response, and enhance durability. In the fields of construction, automobile and furniture, pentamethyldipropylene triamine has significant application effect and has broad market prospects. In the future, with the continuous advancement of technology and the continuous expansion of the market, pentamethyldipropylene triamine will play an important role in more fields and contribute to the development of materials science.

Appendix

Appendix A: Chemical structure diagram of pentamethyldipropylene triamine

CH3
|
N-CH2-CH=CH2
|
CH3
|
N-CH2-CH=CH2
|
CH3
|
N-CH2-CH=CH2
|
CH3

Appendix B: Table of physical properties of pentamethyldipropylene triamine

Properties value
Molecular Weight 215.3 g/mol
Density 0.89 g/cm³
Boiling point 250°C
Flashpoint 120°C
Solution Easy soluble in water and organic solvents

Appendix C: Product specification table of pentamethyldipropylene triamine

parameters value
Appearance Colorless to light yellow liquid
Purity ?99%
Moisture ?0.1%
Acne ?0.5 mg KOH/g
Amine Value 450-500 mg KOH/g
Viscosity 10-15 mPa·s
Density 0.89 g/cm³
Boiling point 250°C
Flashpoint 120°C

Appendix D: How to use pentamethyldipropylene triamine

  1. Additional amount: The recommended amount is usually 0.5%-1.5% of the total weight of polyurethane foam.
  2. Mixing method: Premix pentamethyldipropylene triamine with polyol and then react with isocyanate.
  3. Reaction conditions: The reaction temperature is controlled at 20-30°C, and the reaction time is adjusted according to the specific formula.

Appendix E: Precautions for Pentamethyldipropylene triamine

  • Storage conditions: Pentamethyldipropylene triamine should be stored in a cool, dry and well-ventilated place to avoid direct sunlight and high temperatures.
  • Safety Protection: Wear protective gloves and glasses during operation to avoid direct contact with the skin and eyes.
  • Waste treatment: Disposable pentamethyldipropylene triamine should be treated in accordance with local environmental protection regulations to avoid pollution of the environment.

Through the detailed introduction of this article, I believe that readers have a comprehensive understanding of the role of N,N,N’,N”,N”-pentamethyldipropylene triamine in improving the sound absorption performance of polyurethane foam. It is hoped that this effective method can play a greater role in future materials science research and application, and bring more innovation and progress to all walks of life.

Extended reading:https://www.newtopchem.com/archives/42953

Extended reading:https://www.newtopchem.com/archives/44359

Extended reading:<a href="https://www.newtopchem.com/archives/44359

Extended reading:https://www.bdmaee.net/wp-content/uploads/2016/06/Niax-A-99-MSDS.pdf

Extended reading:https://www.cyclohexylamine.net/polycat-9-trisdimethylaminopropylamine/

Extended reading:https://www.newtopchem.com/archives/category/products/page/7

Extended reading:https://www.bdmaee.net/niax-sa-800-tertiary-amine-catalyst-momentive/

Extended reading:https://www.bdmaee.net/niax-kst-100npf-low-odor-tertiary-amine-catalyst-momentive/

Extended reading:https://www.bdmaee.net/wp-content/uploads/2022/08/37-3.jpg

Extended reading:https://www.newtopchem.com/archives/category/products/page/106

Extended reading:https://www.bdmaee.net/dibbutyltin-benzoate/

The importance of N,N,N’,N”,N”-pentamethyldipropylene triamine in the manufacturing of polyurethane components in the aerospace field

The importance of N,N,N’,N”,N”-pentamethyldipropylene triamine in the manufacturing of polyurethane components in the aerospace field

Introduction

In the field of aerospace, the selection and application of materials are crucial. Polyurethane materials are widely used in the manufacturing of aerospace components due to their excellent physical and chemical properties. N,N,N’,N”,N”-pentamethyldipropylene triamine (hereinafter referred to as “pentamethyldipropylene triamine”) plays an indispensable role in the synthesis of polyurethane materials. This article will discuss in detail the importance of pentamethyldipropylene triamine in the manufacturing of polyurethane components in the aerospace field, covering its chemical characteristics, application scenarios, product parameters and its impact on the performance of polyurethane materials.

1. Chemical properties of pentamethyldipropylene triamine

1.1 Chemical structure

The chemical formula of pentamethyldipropylene triamine is C11H23N3, and its molecular structure contains three nitrogen atoms and two propylene groups. This structure imparts its unique chemical properties, allowing it to exhibit excellent catalytic activity in polyurethane synthesis.

1.2 Physical Properties

parameters value
Molecular Weight 197.32 g/mol
Boiling point 250-260°C
Density 0.89 g/cm³
Flashpoint 110°C
Solution Easy soluble in organic solvents, such as,

1.3 Chemical Properties

Penmethyldipropylene triamine is highly alkaline and can effectively catalyze the reaction of isocyanate and polyol to form polyurethane. It has high catalytic activity, fast reaction speed, and has little impact on the pH value of the reaction system. It is suitable for the synthesis of a variety of polyurethane systems.

Disk. The role of pentamethyldipropylene triamine in polyurethane synthesis

2.1 Catalytic mechanism

Penmethyldipropylene triamine forms coordination bonds with carbon atoms in isocyanate through the lone pair of electrons on its nitrogen atom, thereby reducing the reaction activation energy and accelerating the reaction process. The catalytic mechanism is as follows:

  1. Coordination: The nitrogen atom of pentamethyldipropylene triamine forms a coordination bond with the carbon atom of isocyanate, making the isoplasmic bondCyanate molecule activation.
  2. Proton transfer: The hydroxyl group in the polyol undergoes proton transfer with the activated isocyanate to form an intermediate.
  3. chain growth: The intermediate reacts further to form a polyurethane chain.

2.2 Catalytic effect

The catalytic effect of pentamethyldipropylene triamine is significant, which can greatly shorten the synthesis time of polyurethane and improve production efficiency. Its catalytic activity is closely related to factors such as reaction temperature and concentration. The specific relationship is shown in the table below:

Reaction temperature (°C) Catalytic concentration (wt%) Reaction time (min)
25 0.1 120
50 0.1 60
75 0.1 30
100 0.1 15

Application of trimethoxypropylene triamine in aerospace field

3.1 Performance requirements of polyurethane materials

The aerospace field has extremely strict requirements on materials, and polyurethane materials must have the following properties:

  • High strength: withstand mechanical stress under extreme conditions.
  • High temperature resistance: maintain stability in a high temperature environment.
  • Corrosion Resistance: Resistance to chemical corrosion and oxidation.
  • Lightweight: Reduce the weight of the aircraft and improve fuel efficiency.

3.2 Effect of pentamethyldipropylene triamine on the properties of polyurethane materials

The application of pentamethyldipropylene triamine in polyurethane synthesis has significantly improved the performance of the material, and the specific performance is as follows:

3.2.1 Improve reaction efficiency

The high catalytic activity of pentamethyldipropylene triamine greatly shortens the synthesis time of polyurethane and significantly improves the production efficiency. This is particularly important for large-scale production in the aerospace field.

3.2.2 Improve the mechanical properties of materials

By optimizing the amount of catalyst and reaction conditions, pentamethyldipropylene triamine can effectively regulate the molecular structure of polyurethane and improve the strength and toughness of the material. Specific mechanical properties are shown in the following table:

Catalytic Dosage (wt%) Tension Strength (MPa) Elongation of Break (%)
0.05 25 300
0.1 30 350
0.2 35 400

3.2.3 Enhanced high temperature resistance

The polyurethane material catalyzed by pentamethyldipropylene triamine shows excellent stability under high temperature environment. Its thermal decomposition temperature is as high as 300°C and is suitable for high temperature application scenarios in the aerospace field.

3.2.4 Improve corrosion resistance

The polyurethane material catalyzed by pentamethyldipropylene triamine has excellent chemical corrosion resistance, can resist the corrosion of a variety of chemical media, and extend the service life of the material.

3.3 Specific application cases

3.3.1 Aircraft interior materials

Polyurethane materials catalyzed by pentamethyldipropylene triamine are widely used in the manufacturing of aircraft interiors, such as seats, carpets, sound insulation materials, etc. Its lightweight, high strength and high temperature resistance meet the strict requirements of aircraft interior.

3.3.2 Spacecraft Seal Materials

In the spacecraft’s sealing materials, the polyurethane material catalyzed by pentamethyldipropylene triamine shows excellent sealing performance and corrosion resistance, ensuring the safe operation of the spacecraft in extreme environments.

3.3.3 Rocket Propellant Adhesive

The polyurethane material catalyzed by pentamethyldipropylene triamine is also used as a binder for rocket propellants. Its high strength and high temperature resistance ensure the stability of the propellant in a high temperature and high pressure environment.

Product parameters of tetramethyldipropylene triamine

4.1 Product Specifications

parameters value
Appearance Colorless to light yellow liquid
Purity ?99%
Moisture content ?0.1%
Acne ?0.1 mg KOH/g
Storage temperature 0-30°C

4.2 Recommendations for use

  • Doing: The recommended dosage is 0.1-0.2% of the total weight of polyurethane.
  • Reaction temperature: The optimal reaction temperature is 50-100°C.
  • Storage conditions: Store in a cool and dry place to avoid direct sunlight.

The future development of pentamethyldipropylene triamine

5.1 Research and development of new catalysts

With the continuous development of aerospace technology, the performance requirements for polyurethane materials are also increasing. In the future, the research and development direction of pentamethyldipropylene triamine will focus on improving catalytic activity, reducing dosage, and improving environmental friendliness.

5.2 Green synthesis process

The enhancement of environmental awareness has promoted the development of green synthesis technology. In the future, the synthesis process of pentamethyldipropylene triamine will pay more attention to energy conservation and emission reduction and reduce its impact on the environment.

5.3 Multifunctional application

The multifunctional application of pentamethyldipropylene triamine will become a hot topic in future research. Through the design and modification of the molecular structure, it can catalyze the synthesis of polyurethane and impart more functional characteristics to the material, such as self-healing, conductivity, etc.

Conclusion

N,N,N’,N”,N”-pentamethyldipropylene triamine, as a highly efficient catalyst, plays an important role in the manufacturing of polyurethane components in the aerospace field. Its excellent catalytic performance significantly improves the mechanical properties, high temperature resistance and corrosion resistance of polyurethane materials, and meets the strict requirements for materials in the aerospace field. In the future, with the development of new catalysts and the application of green synthesis processes, pentamethyldipropylene triamine will play a greater role in the aerospace field and promote the further development of polyurethane materials.


Note: The content of this article is original and aims to provide the importance of N,N,N’,N”,N”-pentamethyldipropylene triamine in the manufacturing of polyurethane components in the aerospace field

Extendedreading:https://www.bdmaee.net/wp-content/uploads/2022/08/33-9.jpg

Extended reading:<a href="https://www.bdmaee.net/24-pyridinedicarboxylic-acid/

Extended reading:<a href="https://www.bdmaee.net/24-pyridinedicarboxylic-acid/

Extended reading:https://www.newtopchem.com/archives/category/products/page/14

Extended reading:https://www.bdmaee.net/benzyldimethylamine/

Extended reading:https://www.bdmaee.net/zinc-neodecanoate/

Extended reading:https://www.newtopchem.com/archives/40316

Extended reading:https://www.bdmaee.net/cas-1696-20-4/

Extended reading:https://www.bdmaee.net/dabco-t-9-catalyst-cas29568-56-9-evonik-germany/

Extended reading:https://www.cyclohexylamine.net/delay-catalyst-1027-foaming-retarder-1027/

Extended reading:https://www.newtopchem.com/archives/44797