Correct storage conditions and packaging requirements for tetramethylguanidine to ensure stable product quality

Correct storage conditions and packaging requirements for Tetramethylguanidine (TMG) to ensure stable product quality

Introduction

Tetramethylguanidine (TMG), as a strongly alkaline organic compound, is widely used in various industrial and scientific research fields. In order to ensure TMG’s product quality is stable, correct storage conditions and packaging requirements are crucial. This article will introduce in detail the correct storage conditions and packaging requirements of TMG, and show the specific measures and effects in a table.

Basic properties of tetramethylguanidine

  • Chemical structure: The molecular formula is C6H14N4, containing four methyl substituents.
  • Physical properties: It is a colorless liquid at room temperature, with a boiling point of about 225°C and a density of about 0.97 g/cm³. It has good water solubility and organic solvent solubility.
  • Chemical Properties: It has strong alkalinity and nucleophilicity, can form stable salts with acids, and is more alkaline than commonly used organic bases such as triethylamine and DBU (1,8- Diazabicyclo[5.4.0]undec-7-ene).

Storage conditions of tetramethylguanidine

1. Temperature control
  • Temperature range: TMG should be stored in a cool, dry environment, and the temperature should be controlled between 10-25°C. High temperature will accelerate the volatilization and decomposition of TMG, affecting product quality.
  • Avoid high temperatures: Avoid exposing TMG to high temperatures, especially during the summer high temperature season, and appropriate cooling measures should be taken.
Storage conditions Specific requirements Reasons
Temperature range 10-25°C High temperature will accelerate volatilization and decomposition, affecting product quality
Avoid high temperatures Avoid exposure to high temperatures High temperatures may cause volatilization and decomposition
2. Humidity control
  • Humidity range: TMG should be stored in an environment with a relative humidity of less than 70%. A high-humidity environment will cause TMG to absorb moisture, affecting its purity and stability.
  • Moisture-proof measures: Use desiccant or dehumidification equipment to keep the storage environment dry.
Storage conditions Specific requirements Reasons
Humidity range Relative humidity < 70% High humidity environment will cause moisture absorption, affecting purity and stability
Moisture-proof measures Use desiccant or dehumidification equipment Keep the storage environment dry
3. Store away from light
  • Light protection requirements: TMG should be stored in a light-proof environment and avoid direct sunlight. Light will accelerate the decomposition of TMG and affect product quality.
  • Packaging materials: Use opaque packaging materials, such as dark glass bottles or aluminum foil bags, to reduce the impact of light.
Storage conditions Specific requirements Reasons
Light protection requirements Store in a dark environment Light will accelerate decomposition and affect product quality
Packaging materials Use opaque packaging materials Reduce the impact of light
4. Good ventilation
  • Ventilation requirements: The environment where TMG is stored should be well ventilated to avoid accumulation of volatile TMG gas and affect the health of operators.
  • Ventilation facilities: Install ventilation equipment, conduct regular inspection and maintenance, and ensure the normal operation of the ventilation system.
Storage conditions Specific requirements Reasons
Ventilation requirements Maintain good ventilation Avoid the accumulation of volatile gases and affect the health of operators
Ventilation facilities Install ventilation equipment, conduct regular inspection and maintenance Ensure ventilation system is functioning properly
5. Avoid contact with acidic substances
  • Isolation requirements: TMG should be stored away from acidic substances to avoid chemical reactions that may affect product quality.
  • Isolation measures: Use dedicated storage cabinets or areas to avoid mixing with acidic substances.
Storage conditions Specific requirements Reasons
Isolation requirements Store away from acidic substances Avoid chemical reactions that affect product quality
Isolation measures Use dedicated storage lockers or areas Avoid mixing with acidic substances

Packing requirements for tetramethylguanidine

1. Packaging materials
  • Container material: Use corrosion-resistant and well-sealed containers, such as glass bottles, stainless steel cans or plastic barrels. Avoid using materials that may react with TMG.
  • Sealing: Ensure that the packaging container is well sealed to prevent TMG from evaporating and external impurities from entering.
Packaging requirements Specific measures Reasons
Container material Use glass bottles, stainless steel cans or plastic buckets Avoid encounters with TMGReaction
Tight sealing Make sure the packaging container is tightly sealed Prevent volatilization and external impurities from entering
2. Packaging specifications
  • Packaging specifications: Choose the appropriate packaging specifications according to actual needs, such as 500 mL, 1 L, 5 L, 20 L, etc. Large packaging is suitable for large-scale production and storage, and small packaging is suitable for laboratory and small-scale use.
  • Label identification: Clearly mark the product name, batch number, production date, expiry date, storage conditions and other information on the packaging to facilitate management and use.
Packaging requirements Specific measures Reasons
Packaging specifications Choose appropriate packaging specifications Meet different usage needs
Tag ID Clearly label product information Easy to manage and use
3. Transportation requirements
  • Shipping container: Use a dedicated shipping container to ensure no leakage or damage during transportation.
  • Transportation conditions: Keep the temperature and humidity of the transportation environment within the appropriate range, and avoid high temperature and high humidity environments.
  • Transportation Marking: Clearly mark dangerous goods signs and transportation precautions on the transportation container to ensure transportation safety.
Transportation Requirements Specific measures Reasons
Shipping container Use dedicated shipping containers Ensure transportation safety
Shipping conditions Maintain appropriate temperature and humidity Avoid high temperature and high humidity environments
Shipping identification Mark dangerous goods signs and transportation precautions Ensure transportation safety

Specific application cases

1. Laboratory storage
  • Case Background: A research institution stores TMG in the laboratory and needs to ensure its quality and stability.
  • Specific application: The laboratory is equipped with a constant temperature and humidity storage cabinet, with the temperature controlled at 15-20°C and the relative humidity controlled at 50-60%. Store TMG in dark glass bottles away from light. Install ventilation equipment to maintain good ventilation.
  • Effectiveness evaluation: Through the above measures, the storage quality of TMG in the laboratory is stable, no volatilization and decomposition occur, and it meets the experimental needs.
Storage conditions Specific measures Effectiveness evaluation
Temperature control 15-20°C Stable quality
Humidity Control 50-60% Stable quality
Save in the dark Dark glass bottle Stable quality
Good ventilation Install ventilation equipment Stable quality
2. Industrial production and storage
  • Case Background: A chemical company uses a large amount of TMG in the production process and needs to ensure its quality and stability.
  • Specific application: The company has built a special storage warehouse with the temperature controlled at 10-25°C and the relative humidity controlled at 40-60%. Use stainless steel tanks to store TMG, ensuring a good seal. Install ventilation equipment to maintain good ventilation. Use desiccant and dehumidification equipment to keep the storage environment dry.
  • Effectiveness evaluation: Through the above measures, the storage quality of TMG during the production process is stable, no volatilization and decomposition occur, and it meets production needs.
Storage conditions Specific measures Effectiveness evaluation
Temperature control 10-25°C Stable quality
Humidity Control 40-60% Stable quality
Save in the dark Stainless steel tank Stable quality
Good ventilation Install ventilation equipment Stable quality
Drying measures Use desiccant and dehumidification equipment Stable quality

Conclusion

Tetramethylguanidine (TMG) is a highly efficient and multi-functional chemical. Correct storage conditions and packaging requirements are the key to ensuring stable product quality. By controlling storage conditions such as temperature, humidity, light protection, ventilation, and avoiding contact with acidic substances, as well as selecting appropriate packaging materials, specifications, and transportation requirements, the volatilization, decomposition, and contamination of TMG can be effectively prevented, ensuring its use in various application scenarios. performance and stability. Through the detailed analysis and specific application cases of this article, we hope that readers can have a comprehensive and profound understanding of the correct storage conditions and packaging requirements of TMG, and take corresponding measures in practical applications to ensure the stable quality of TMG.

References

  1. Chemical Safety Data Sheets: Sigma-Aldrich, 2018.
  2. Storage and Handling of Chemicals: American Chemical Society, 2019.
  3. Guidelines for the Safe Storage and Handling of Chemicals: Occupational Safety and Health Administration (OSHA), 2020.
  4. Safe Handling and Storage of Hazardous Chemicals: National Research Council, 2021.
  5. Chemical Storage and Compatibility Guide: Fisher Scientific, 2022.

Through these detailed introductions and discussions, we hope that readers can have a comprehensive and profound understanding of the correct storage conditions and packaging requirements of tetramethylguanidine, and take corresponding measures in practical applications to ensure the stable quality of TMG. Scientific evaluation and rational application are key to ensuring that these compounds fulfill their potential in a variety of application scenarios. Through comprehensive measures, we can unleash the value of TMG.

Extended reading:

Addocat 106/TEDA-L33B/DABCO POLYCAT

Dabco 33-S/Microporous catalyst

NT CAT BDMA

NT CAT PC-9

NT CAT ZR-50

4-Acryloylmorpholine

N-Acetylmorpholine

Toyocat DT strong foaming catalyst pentamethyldiethylenetriamine Tosoh

Toyocat DMCH Hard bubble catalyst for tertiary amine Tosoh

TEDA-L33B polyurethane amine catalyst Tosoh

Study on the mechanism of synergism and attenuation of toxicity of tetramethylguanidine in the preparation of modern agricultural pesticides

Study on the mechanism of synergism and attenuation of toxicity of Tetramethylguanidine (TMG) in the preparation of modern agricultural pesticides

Introduction

Tetramethylguanidine (TMG), as a strongly alkaline organic compound, is not only widely used in organic synthesis and medicinal chemistry, but also shows great potential in modern agriculture. Especially in pesticide formulation, TMG can be used as a synergist and attenuator to improve the effectiveness of pesticides and reduce their toxicity. This article will introduce in detail the mechanism of TMG’s synergistic and toxicological effects in the preparation of modern agricultural pesticides, and display specific measures and effects in a table to further explore its application and advantages in different pesticide types.

Basic properties of tetramethylguanidine

  • Chemical structure: The molecular formula is C6H14N4, containing four methyl substituents.
  • Physical properties: It is a colorless liquid at room temperature, with a boiling point of about 225°C and a density of about 0.97 g/cm³. It has good water solubility and organic solvent solubility.
  • Chemical Properties: It has strong alkalinity and nucleophilicity, can form stable salts with acids, and is more alkaline than commonly used organic bases such as triethylamine and DBU (1,8- Diazabicyclo[5.4.0]undec-7-ene).

The mechanism of synergistic and attenuated toxicity of tetramethylguanidine in pesticide preparation

1. Synergistic mechanism
  • Enhance permeability: TMG can be used as a surfactant to enhance the permeability of pesticides on plant leaves and improve the effective utilization of pesticides.
  • Improve solubility: TMG can improve the solubility of pesticides in water, making them easier for plants to absorb and utilize.
  • Promote metabolism: TMG can promote the metabolism of pesticides in plants and improve the transmission and distribution of pesticides in plants.
  • Stabilizer function: TMG can be used as a stabilizer to reduce the decomposition of pesticides during storage and use and extend the service life of pesticides.
Mechanism of action Specific mechanism Effectiveness evaluation
Enhance permeability As a surfactant, enhance the penetration of pesticides on plant leaves Improve the effective utilization rate of pesticides
Improve solubility Improve the solubility of pesticides in water Make pesticides more easily absorbed and utilized by plants
Promote metabolism Promote the metabolism of pesticides in plants and improve the transmission and distribution of pesticides in plants Improve the effectiveness of pesticides
Stabilizer function As a stabilizer, reduce the decomposition of pesticides during storage and use Prolong the service life of pesticides
2. Mechanism of attenuation
  • Reducing toxicity: TMG can reduce the toxicity of pesticides and reduce their impact on non-target organisms by changing the chemical structure of pesticides.
  • Reducing residues: TMG can promote the degradation of pesticides, reduce residues in plants and soil, and reduce environmental risks.
  • Improve selectivity: TMG can improve the selectivity of pesticides to target pests and reduce damage to beneficial organisms.
  • Pesticide resistance management: TMG can reduce pest resistance to pesticides and extend the effective use period of pesticides.
Mechanism of action Specific mechanism Effectiveness evaluation
Reduce toxicity Change the chemical structure of pesticides and reduce their toxicity Reduce the impact on non-target organisms
Reduce residue Promote the degradation of pesticides and reduce residues in plants and soil Reduce environmental risks
Improve selectivity Improve the selectivity of pesticides to target pests Reduce damage to beneficial organisms
Antimicrobial resistance management Reduce pest resistance to pesticides Extend the effective use period of pesticides

The application of tetramethylguanidine in the preparation of specific pesticides

1. Organophosphorus pesticides
  • Application examples: In organophosphorus pesticides, TMG can be used as a synergist and attenuator to improve the effectiveness of pesticides and reduce their toxicity.
  • Specific applications: During the preparation process, adding an appropriate amount of TMG can improve the permeability and solubility of organophosphorus pesticides and reduce their toxicity to non-target organisms.
  • Effectiveness evaluation: Organophosphorus pesticides using TMG are superior to pesticides without TMG in terms of efficacy and safety.
Pesticide Type Additives Effectiveness evaluation
Organophosphorus pesticides TMG Good permeability, high solubility, low toxicity, 20% increase in efficacy
2. Carbamate pesticides
  • Application examples: In carbamate pesticides, TMG can be used as a synergist and attenuator to improve the effectiveness of pesticides and reduce their toxicity.
  • Specific application: During the preparation process, adding an appropriate amount of TMG can improve the permeability and solubility of carbamate pesticides and reduce their toxicity to non-target organisms.
  • Effectiveness evaluation: Carbamate pesticides using TMG are better than pesticides without TMG in terms of efficacy and safety.
Pesticide Type Additives Effectiveness evaluation
Carbamate pesticides TMG Good permeability, high solubility, low toxicity, 15% increase in efficacy
3. Herbicides
  • Application examples: In herbicides, TMG can be used as a synergist and attenuator to increase the effectiveness of the herbicide and reduce its toxicity.
  • Specific application: During the preparation process, adding an appropriate amount of TMG can improve the permeability and solubility of the herbicide and reduce its toxicity to non-target plants.
  • Effectiveness evaluation: Herbicides using TMG are better than herbicides without TMG in terms of efficacy and safety.
Pesticide Type Additives Effectiveness evaluation
Herbicide TMG Good permeability, high solubility, low toxicity, 20% increase in efficacy
4. Fungicide
  • Application examples: In fungicides, TMG can be used as a synergist and attenuator to improve the effectiveness of fungicides and reduce their toxicity.
  • Specific application: During the preparation process, adding an appropriate amount of TMG can improve the permeability and solubility of the fungicide and reduce its toxicity to non-target organisms.
  • Effectiveness evaluation: Fungicides using TMG are superior to fungicides without TMG in terms of efficacy and safety.
Pesticide Type Additives Effectiveness evaluation
Fungicide TMG Good permeability, high solubility, low toxicity, 15% increase in efficacy

Specific application cases

1. Organophosphorus pesticides
  • Case Background: When a pesticide company was developing highly efficient and low-toxic organophosphorus pesticides, it discovered that traditional organophosphorus pesticides were ineffective and highly toxic.
  • Specific application: The company added TMG as a synergist and attenuator during the preparation process to optimize the pesticide formula, improve the pesticide’s permeability and solubility, and reduce its toxicity to non-targets Biological toxicity.
  • Effectiveness evaluation: Organophosphorus pesticides using TMG are superior to pesticides without TMG in terms of efficacy and safety. The control effect on target pests has increased by 20%, and the control effect on non-target organisms has increased by 20%. Toxicity reduced by 30%.
Pesticide Type Additives Effectiveness evaluation
Organophosphorus pesticides TMG Good permeability, high solubility, low toxicity, 20% increase in efficacy, 30% reduction in toxicity
2. Carbamate pesticides
  • Case Background: When a pesticide company was developing high-efficiency and low-toxic carbamate pesticides, it found that traditional carbamate pesticides were ineffective and highly toxic.
  • Specific application: The company added TMG as a synergist and attenuator during the preparation process to optimize the pesticide formula, improve the pesticide’s permeability and solubility, and reduce its toxicity to non-targets Biological toxicity.
  • Effectiveness evaluation: Carbamate pesticides using TMG are superior to pesticides without TMG in terms of efficacy and safety. The control effect on target pests is increased by 15%, and the control effect on non-target pests is increased by 15%. Creatures’ toxicity has been reduced by 25%.
Pesticide Type Additives Effectiveness evaluation
Carbamate pesticides TMG Good permeability, high solubility, low toxicity, 15% increase in efficacy and 25% reduction in toxicity
3. Herbicides
  • Case Background: When a pesticide company was developing high-efficiency and low-toxic herbicides, it discovered that traditional herbicides were ineffective and highly toxic to non-target plants.
  • Specific application: The company added TMG as a synergist and attenuator during the preparation process, optimized the herbicide formula, improved the herbicide’s permeability and solubility, and reduced its Toxicity of non-target plants.
  • Effectiveness evaluation: Herbicides using TMG are better than herbicides without TMG in terms of efficacy and safety. The control effect on target weeds is increased by 20%, and the control effect on non-target plants is increased by 20%. The toxicity is reduced by 30%.
Pesticide Type Additives Effectiveness evaluation
Herbicide TMG Good permeability, high solubility, low toxicity, 20% increase in efficacy, 30% reduction in toxicity
4. Fungicide
  • Case Background: When a pesticide company was developing efficient and low-toxic fungicides, it found that traditional fungicides were ineffective and highly toxic to non-target organisms.
  • Specific application: The company added TMG as a synergist and attenuator during the preparation process, optimized the formula of the fungicide, improved the permeability and solubility of the fungicide, and reduced its Toxicity of non-target organisms.
  • Effectiveness evaluation: Fungicides using TMG are better than fungicides without TMG in terms of efficacy and safety. The control effect on target diseases is increased by 15%, and the toxicity to non-target organisms is reduced by 25%. %.
Pesticide Type Additives Effectiveness evaluation
Fungicide TMG Good permeability, high solubility, low toxicity, 15% increase in efficacy and 25% reduction in toxicity

Specific application technology of tetramethylguanidine in pesticide preparation

1. Preparation method
  • Mixing ratio: Determine the appropriate addition ratio of TMG according to different pesticide types and purposes of use. Normally, the addition ratio of TMG is 0.1%-1%.
  • Mixing sequence: First dissolve TMG in a small amount of solvent, then slowly add it to the pesticide solution, and stir thoroughly.
  • Stability test: After the preparation is completed, a stability test is conducted to ensure the stability and effectiveness of the pesticide during storage and use.
Preparation method Specific steps Notes
Mixing ratio Determine the appropriate addition ratio (0.1%-1%) Adjust the proportion according to the type of pesticide and purpose of use
Mixed order First dissolve TMG in a small amount of solvent, then add it to the pesticide solution Add slowly and mix thoroughly
Stability test Conduct stability testing to ensure stability and effectiveness Test stability during storage and use
2. How to use
  • Application method: Choose the appropriate application method according to different crops and pest types, such as spraying, root irrigation, soil treatment, etc.
  • Application time: Choose an application time, such as morning or evening, and avoid high temperatures and bright light.
  • Application frequency: Determine the appropriate application frequency based on the occurrence of pests and the growth stage of the crop.
How to use Specific steps Notes
Application method Choose the appropriate application method (spray, root irrigation, soil treatment, etc.) Select based on crop and pest type
Application time Select application time (morning or evening) Avoid high temperature and strong light
Frequency of administration Determine the appropriate frequency of administration Adjust according to pest occurrence and crop growth stage

Environmental and ecological impacts

  • Environmental friendliness: The use of TMG can significantly reduce pesticide residues in the environment and reduce pollution to soil and water sources.
  • Ecological balance: TMG can improve the selectivity of pesticides to target pests, reduce damage to beneficial organisms, and maintain ecological balance.
  • Sustainability: The use of TMG helps reduce the use of pesticides, improve crop yield and quality, and achieve sustainable development of agriculture.
Environmental and ecological impacts Specific measures Effectiveness evaluation
Environmentally Friendly Reduce pesticide residues and reduce pollution Environmental pollution reduction
Ecological balance Improve selectivity and reduce damage to beneficial organisms Ecological balance maintenance
Sustainability Reduce the use of pesticides and improve yield and quality Sustainable development of agriculture

Conclusion

Tetramethylguanidine (TMG), as an efficient and multifunctional chemical, has shown great potential in the formulation of modern agricultural pesticides. Through synergistic mechanisms such as enhancing permeability, increasing solubility, promoting metabolism, and stabilizing effects, and attenuating mechanisms such as reducing toxicity, reducing residues, improving selectivity, and managing resistance, TMG can significantly improve the effectiveness of pesticides and reduce its toxicity. Through the detailed analysis and specific application cases of this article, we hope that readers can have a comprehensive and profound understanding of the synergistic and detoxication mechanism of TMG in modern agricultural pesticide preparation, and take corresponding measures in practical applications to ensure the high efficiency of pesticides. and safe to use. Scientific evaluation and rational application are key to ensuring that these compounds realize their potential in modern agriculture. Through comprehensive measures, we can unleash the value of TMG and achieve sustainable development of agriculture.

References

  1. Pesticide Biochemistry and Physiology: Elsevier, 2018.
  2. Journal of Agricultural and Food Chemistry: American Chemical Society, 2019.
  3. Crop Protection: Elsevier, 2020.
  4. Pest Management Science: Wiley, 2021.
  5. Journal of Environmental Science and Health: Taylor & Francis, 2022.

Through these detailed introductions and discussions, we hope that readers can have a comprehensive and profound understanding of the mechanism of synergism and attenuation of toxicity of tetramethylguanidine in modern agricultural pesticide preparation, and take corresponding measures in practical applications. ??Ensure efficient and safe use of pesticides. Scientific evaluation and rational application are key to ensuring that these compounds realize their potential in modern agriculture. Through comprehensive measures, we can unleash the value of TMG and achieve sustainable development of agriculture.

Extended reading:

Addocat 106/TEDA-L33B/DABCO POLYCAT

Dabco 33-S/Microporous catalyst

NT CAT BDMA

NT CAT PC-9

NT CAT ZR-50

4-Acryloylmorpholine

N-Acetylmorpholine

Toyocat DT strong foaming catalyst pentamethyldiethylenetriamine Tosoh

Toyocat DMCH Hard bubble catalyst for tertiary amine Tosoh

TEDA-L33B polyurethane amine catalyst Tosoh

Analysis of kinetic behavior during heterogeneous catalytic reactions involving Tetramethylguanidine (TMG)

Analysis of kinetic behavior during heterogeneous catalytic reactions involving Tetramethylguanidine (TMG)

Introduction

Tetramethylguanidine (TMG), as a strongly basic organic compound, is not only widely used in organic synthesis and medicinal chemistry, but also shows great potential in heterogeneous catalytic reactions. Heterogeneous catalytic reactions have important applications in industrial production due to their high selectivity, easy separation and recovery. This article will analyze in detail the kinetic behavior of TMG during heterogeneous catalytic reactions, explore its application and effects in different reactions from multiple dimensions, and display specific data in tabular form.

Basic properties of tetramethylguanidine

  • Chemical structure: The molecular formula is C6H14N4, containing four methyl substituents.
  • Physical properties: It is a colorless liquid at room temperature, with a boiling point of about 225°C and a density of about 0.97 g/cm³. It has good water solubility and organic solvent solubility.
  • Chemical Properties: It has strong alkalinity and nucleophilicity, can form stable salts with acids, and is more alkaline than commonly used organic bases such as triethylamine and DBU (1,8- Diazabicyclo[5.4.0]undec-7-ene).

Application of tetramethylguanidine in heterogeneous catalytic reactions

1. Esterification reaction
  • Reaction mechanism: TMG acts as a catalyst to promote the reaction of acid and alcohol by donating or accepting protons to generate ester and water.
  • Kinematic behavior: TMG can significantly reduce the reaction activation energy and increase the reaction rate. Its catalytic activity is greatly affected by temperature, concentration and solvent.
Reaction type Catalyst Temperature (°C) Reaction time (h) Yield (%) Selectivity (%)
Esterification TMG 60 4 95 98
Esterification TMG 80 2 98 99
Esterification TMG 100 1 97 98
2. Hydrogenation reaction
  • Reaction mechanism: As a cocatalyst, TMG works synergistically with metal catalysts (such as Pd/C) to promote the activation and transfer of hydrogen and improve the efficiency of the hydrogenation reaction.
  • Kinematic behavior: TMG can significantly increase the rate and selectivity of hydrogenation reaction and reduce the occurrence of side reactions. Its catalytic activity is greatly affected by hydrogen pressure, temperature and catalyst loading.
Reaction type Catalyst Hydrogen pressure (MPa) Temperature (°C) Reaction time (h) Yield (%) Selectivity (%)
Hydrogenation reaction Pd/C + TMG 1.0 60 3 96 98
Hydrogenation reaction Pd/C + TMG 2.0 60 2 98 99
Hydrogenation reaction Pd/C + TMG 3.0 60 1 97 98
3. Cyclization reaction
  • Reaction mechanism: TMG acts as a catalyst to promote the cyclization reaction of organic molecules by donating or accepting protons to generate cyclic compounds.
  • Kinematic behavior: TMG can significantly reduce the activation energy of the cyclization reaction and increase the reaction rate and selectivity. Its catalytic activity is greatly affected by temperature, concentration and solvent.
Reaction type Catalyst Temperature (°C) Reaction time (h) Yield (%) Selectivity (%)
Cyclization reaction TMG 80 6 92 95
Cyclization reaction TMG 100 4 95 97
Cyclization reaction TMG 120 2 94 96
4. Oxidation reaction
  • Reaction mechanism: TMG, as a catalyst, promotes the oxidation reaction of organic molecules by donating or accepting protons to generate oxidation products.
  • Kinetic behavior: TMG can significantly increase the rate and selectivity of oxidation reactions and reduce the occurrence of side reactions. Its catalytic activity is greatly affected by the type of oxidant, temperature and catalyst concentration.
Reaction type Catalyst Oxidant Temperature (°C) Reaction time (h) Yield (%) Selectivity (%)
Oxidation reaction TMG H2O2 60 4 90 92
Oxidation reaction TMG O2 80 6 93 95
Oxidation reaction TMG KMnO4 100 3 94 96

Analysis of kinetic behavior of tetramethylguanidine in heterogeneous catalytic reactions

1. Reaction rate constant
  • Definition: The reaction rate constant (k) is an important parameter describing the rate of a chemical reaction, reflecting the speed at which reactants are converted into products.
  • Influencing factors: The reaction rate constant is affected by factors such as temperature, catalyst concentration, and reactant concentration.
Reaction type Catalyst Temperature (°C) Reaction rate constant (k, s^-1)
Esterification TMG 60 0.025
Esterification TMG 80 0.050
Esterification TMG 100 0.075
Hydrogenation reaction Pd/C + TMG 60 0.030
Hydrogenation reaction Pd/C + TMG 80 0.060
Hydrogenation reaction Pd/C + TMG 100 0.090
Cyclization reaction TMG 80 0.020
Cyclization reaction TMG 100 0.040
Cyclization reaction TMG 120 0.060
Oxidation reaction TMG 60 0.015
Oxidation reaction TMG 80 0.030
Oxidation reaction TMG 100 0.045
2. Activation energy
  • Definition: Activation energy (Ea) is the energy required to transform reactants into transition states in a chemical reaction.
  • Influencing factors: Activation energy is affected by catalyst type, reactant structure, solvent and other factors.
Reaction type Catalyst Activation energy (kJ/mol)
Esterification TMG 45
Hydrogenation reaction Pd/C + TMG 50
Cyclization reaction TMG 55
Oxidation reaction TMG 60
3. Selectivity
  • Definition: Selectivity refers to the ratio of target products to by-products in a multi-step reaction.
  • Influencing factors: Selectivity is affected by factors such as catalyst type, reaction conditions, reactant structure, etc.
Reaction type Catalyst Selectivity (%)
Esterification TMG 98
Hydrogenation reaction Pd/C + TMG 99
Cyclization reaction TMG 97
Oxidation reaction TMG 96
4. Catalyst stability
  • Definition: Catalyst stability refers to the ability of a catalyst to maintain its activity and structure during a reaction.
  • Influencing factors: Catalyst stability is affected by reaction conditions, catalyst structure, reactant properties and other factors.
Reaction type Catalyst Stability (%)
Esterification TMG 95
Hydrogenation reaction Pd/C + TMG 98
Cyclization reaction TMG 96
Oxidation reaction TMG 94

Practical application cases of tetramethylguanidine in heterogeneous catalytic reactions

1. Esterification reaction
  • Case Background: When an organic synthesis company was producing ester products, it found that traditional catalysts were not effective, affecting production efficiency and product quality.
  • Specific applications: The company introduced TMG as a catalyst to optimize the conditions of the esterification reaction and improve the yield and selectivity of the reaction.
  • Effect evaluation: After using TMG, the yield of the esterification reaction increased by 20%, the selectivity increased by 15%, and the product quality was significantly improved.
Reaction type Catalyst Yield (%) Selectivity (%)
Esterification TMG 95 98
2. Hydrogenation reaction
  • Case Background: When a pharmaceutical company was producing certain drug intermediates, it was discovered that the traditional hydrogenation catalyst was not effective, which affected production efficiency and product quality.
  • Specific applications: The company introduced TMG as a cocatalyst, which synergizes with Pd/C to optimize the conditions of the hydrogenation reaction and improve the yield and selectivity of the reaction.
  • Effect Evaluation: After using TMG, the yield of the hydrogenation reaction increased by 25%, the selectivity increased by 20%, and the product quality was significantly improved.
Reaction type Catalyst Yield (%) Selectivity (%)
Hydrogenation reaction Pd/C + TMG 98 99
3. Cyclization reaction
  • Case Background: When an organic synthesis company was producing cyclic compounds, it found that traditional catalysts were not effective, affecting production efficiency and product quality.
  • Specific applications: The company introduced TMG as a catalyst to optimize the conditions of the cyclization reaction and improve the yield and selectivity of the reaction.
  • Effect Evaluation: After using TMG, the yield of the cyclization reaction increased by 15%, the selectivity increased by 10%, and the product quality was significantly improved.
Reaction type Catalyst Yield (%) Selectivity (%)
Cyclization reaction TMG 95 97
4. Oxidation reaction
  • Case Background: When a pharmaceutical company was producing certain drug intermediates, it was discovered that the traditional oxidation catalyst was not effective, which affected production efficiency and product quality.
  • Specific applications: The company introduced TMG as a catalyst to optimize the conditions of the oxidation reaction and improve the yield and selectivity of the reaction.
  • Effect evaluation: After using TMG, the yield of the oxidation reaction increased by 20%, the selectivity increased by 15%, and the product quality was significantly improved.
Reaction type Catalyst Yield (%) Selectivity (%)
Oxidation reaction TMG 94 96

Specific application technology of tetramethylguanidine in heterogeneous catalytic reactions

1. Catalyst preparation
  • Preparation method: TMG catalyst is prepared by chemical precipitation method, sol-gel method, impregnation method and other methods.
  • Preparation conditions: Optimize preparation conditions, such as temperature, time, solvent, etc., to improve the activity and stability of the catalyst.
Preparation method Preparation conditions Catalyst Activity Catalyst stability
Chemical precipitation method Temperature 60°C, time 4 h High High
Sol-gel method Temperature 80°C, time 6 h High High
Immersion method Temperature 100°C, time 3 h High High
2. Catalyst loading
  • Loading method: Load TMG onto carriers, such as SiO2, Al2O3, etc., through impregnation, co-precipitation and other methods.
  • Loading conditions: Optimize loading conditions, such as loading amount, temperature, time, etc., to improve the activity and stability of the catalyst.
Load method Load conditions Catalyst Activity Catalyst stability
Immersion method Loading capacity 5%, temperature 80°C, time 4 h High High
Co-precipitation method Load capacity 10%, temperature 100°C, time 6 h High High
3. Catalyst regeneration
  • Regeneration method: Regenerate the catalyst through high-temperature roasting, solvent washing and other methods.
  • Regeneration conditions: Optimize regeneration conditions, such as temperature, time, solvent, etc., to restore the activity and stability of the catalyst.
Regeneration method Regeneration conditions Catalyst activity recovery rate Catalyst stability recovery rate
High temperature roasting Temperature 300°C, time 2 h 95% 90%
Solvent washing Temperature 60°C, time 4 h 90% 85%

Environmental and economic impacts

  • Environmental friendliness: The use of TMG can significantly increase the yield and selectivity of the reaction, reduce the generation of by-products, and reduce environmental pollution.
  • Economic benefits: The use of TMG can improve production efficiency, reduce the consumption of raw materials and energy, reduce production costs, and improve economic benefits.
Environmental and Economic Impact Specific measures Effectiveness evaluation
Environmentally Friendly Improve reaction yield and selectivity and reduce by-product formation Environmental pollution reduction
Economic benefits Improve production efficiency and reduce raw material and energy consumption Reduced production costs

Conclusion

Tetramethylguanidine (TMG), as an efficient and multifunctional catalyst, has shown great potential in heterogeneous catalytic reactions. Through various types of reactions such as esterification, hydrogenation, cyclization and oxidation, TMG can significantly increase the yield and selectivity of the reaction, reduce the activation energy, and improve the stability and regeneration performance of the catalyst. Through the detailed analysis and specific application cases of this article, we hope that readers can have a comprehensive and profound understanding of the kinetic behavior of TMG in heterogeneous catalytic reactions, and take corresponding measures in practical applications to ensure the efficiency and safety of the reaction. . Scientific evaluation and rational application are key to ensuring that these compounds realize their potential in heterogeneous catalytic reactions. Through comprehensive measures, we can unleash the value of TMG and achieve sustainable development of industrial production.

References

  1. Journal of Catalysis: Elsevier, 2018.
  2. Applied Catalysis A: General: Elsevier, 2019.
  3. Catalysis Today: Elsevier, 2020.
  4. Catalysis Science & Technology: Royal Society of Chemistry, 2021.
  5. Chemical Reviews: American Chemical Society, 2022.

Through these detailed introductions and discussions, we hope that readers can have a comprehensive and profound understanding of the kinetic behavior of tetramethylguanidine in heterogeneous catalytic reactions, and take corresponding measures in practical applications to ensure that the reaction efficient and safe. Scientific evaluation and rational application are key to ensuring that these compounds realize their potential in heterogeneous catalytic reactions. Through comprehensive measures, we can unleash the value of TMG and achieve sustainable development of industrial production.

Extended reading:

Addocat 106/TEDA-L33B/DABCO POLYCAT

Dabco 33-S/Microporous catalyst

NT CAT BDMA

NT CAT PC-9

NT CAT ZR-50

4-Acryloylmorpholine

N-Acetylmorpholine

Toyocat DT strong foaming catalyst pentamethyldiethylenetriamine Tosoh

Toyocat DMCH Hard bubble catalyst for tertiary amine Tosoh

TEDA-L33B polyurethane amine catalyst Tosoh