Main

Bis[2-(N,N-Dimethylaminoethyl)] Ether in High-Performance Aerospace Adhesives: A Comprehensive Overview

Introduction

Bis[2-(N,N-Dimethylaminoethyl)] ether, commonly known as BDMAEE, is a tertiary amine catalyst extensively employed in various industrial applications, notably in polyurethane foam manufacturing and, increasingly, in high-performance aerospace adhesives. Its unique molecular structure, featuring two tertiary amine groups separated by an ether linkage, renders it a highly effective catalyst for both the gelation (polyol-isocyanate reaction) and blowing (water-isocyanate reaction) processes in polyurethane chemistry. In the context of aerospace adhesives, BDMAEE serves as a crucial component in accelerating the curing reaction, enhancing the mechanical properties, and improving the overall performance characteristics required for demanding aerospace applications. This article provides a comprehensive overview of BDMAEE, exploring its chemical properties, mechanism of action, application in aerospace adhesives, advantages, disadvantages, and future trends, drawing upon both domestic and international research.

1. Chemical Properties and Characteristics of BDMAEE

  • Chemical Name: Bis[2-(N,N-Dimethylaminoethyl)] ether
  • Synonyms: DABCO® NE1060; Jeffcat® ZF-10; Polycat® SA-1/10; Dimorpholinodiethylether
  • CAS Registry Number: 3033-62-3
  • Molecular Formula: C??H??N?O
  • Molecular Weight: 214.34 g/mol
  • Structural Formula: (CH?)?N-CH?CH?-O-CH?CH?-N(CH?)?
  • Appearance: Colorless to pale yellow liquid
  • Odor: Amine-like odor
  • Boiling Point: 189-192 °C (at 760 mmHg)
  • Flash Point: 68 °C (closed cup)
  • Density: 0.850-0.855 g/cm³ at 25 °C
  • Viscosity: Low viscosity
  • Solubility: Soluble in water, alcohols, ethers, and most organic solvents.
  • Stability: Relatively stable under normal storage conditions, but may react with strong acids and oxidizing agents.

Table 1: Key Physical and Chemical Properties of BDMAEE

Property Value Unit
Molecular Weight 214.34 g/mol
Boiling Point 189-192 °C
Flash Point 68 °C
Density 0.850-0.855 g/cm³
Vapor Pressure Low N/A
Solubility (Water) Soluble N/A

2. Mechanism of Action as a Catalyst

BDMAEE functions as a tertiary amine catalyst, accelerating the reactions in both polyurethane foam and adhesive systems. Its catalytic activity stems from its ability to:

  • Promote the Polyol-Isocyanate (Gelation) Reaction: The nitrogen atoms in BDMAEE have lone pairs of electrons that can coordinate with the isocyanate group (-NCO), thereby activating the isocyanate towards nucleophilic attack by the hydroxyl group (-OH) of the polyol. This lowers the activation energy of the reaction, resulting in a faster polymerization rate.

  • Promote the Water-Isocyanate (Blowing) Reaction (where applicable): In polyurethane foam systems, water reacts with isocyanate to produce carbon dioxide (CO?), which acts as the blowing agent. BDMAEE also catalyzes this reaction by activating the isocyanate towards nucleophilic attack by water.

The mechanism can be simplified as follows:

  1. BDMAEE (B:) reacts with isocyanate (-NCO) to form an activated complex [B:…NCO].
  2. The activated isocyanate complex is more susceptible to nucleophilic attack by the polyol (-OH) or water (H?O).
  3. The reaction proceeds, forming the urethane linkage or urea linkage (and CO? in the case of water reaction), and regenerating the BDMAEE catalyst.

3. Application in High-Performance Aerospace Adhesives

Aerospace adhesives are subjected to extreme conditions, including wide temperature ranges, high stresses, and exposure to various chemicals and environmental factors. Therefore, they require exceptional mechanical properties, high thermal stability, and excellent resistance to environmental degradation. BDMAEE is often incorporated into aerospace adhesive formulations, particularly in epoxy and polyurethane-based systems, to enhance their performance.

3.1. Epoxy Adhesives:

In epoxy adhesives, BDMAEE acts as an accelerator for the curing reaction between the epoxy resin and the curing agent (e.g., amines, anhydrides). It promotes the ring-opening polymerization of the epoxy groups, leading to a faster cure rate and improved crosslinking density. This results in adhesives with:

  • Higher Bond Strength: Increased crosslinking density leads to a stronger and more durable adhesive bond.
  • Improved Thermal Stability: A more robust crosslinked network provides better resistance to high temperatures.
  • Enhanced Chemical Resistance: Increased crosslinking density reduces the permeability of the adhesive to solvents and other chemicals.
  • Faster Cure Time: Reduced cycle time in manufacturing processes.

Table 2: Effect of BDMAEE on Epoxy Adhesive Properties (Example)

Property Without BDMAEE With BDMAEE (0.5 wt%) Improvement (%) Test Method
Tensile Shear Strength (at 25°C) 25 MPa 32 MPa 28% ASTM D1002
Glass Transition Temperature (Tg) 120 °C 135 °C 12.5% DSC
Lap Shear Strength (after 1000h at 80°C) 20 MPa 28 MPa 40% ASTM D1002

3.2. Polyurethane Adhesives:

In polyurethane adhesives, BDMAEE catalyzes the reaction between the polyol and isocyanate components. This is particularly important in two-part polyurethane adhesive systems used in aerospace applications. The benefits of using BDMAEE in polyurethane adhesives include:

  • Controlled Cure Rate: BDMAEE allows for precise control over the curing process, enabling optimization of the adhesive’s working time and final properties.
  • Improved Adhesion to Various Substrates: The catalytic effect of BDMAEE can improve the wetting and adhesion of the adhesive to different substrates, such as metals, composites, and plastics.
  • Enhanced Mechanical Properties: By promoting a more complete reaction between the polyol and isocyanate, BDMAEE contributes to improved tensile strength, elongation, and impact resistance of the adhesive.
  • Low-Temperature Cure: In some formulations, BDMAEE can facilitate curing at lower temperatures, reducing energy consumption and broadening the application range.

Table 3: Effect of BDMAEE on Polyurethane Adhesive Properties (Example)

Property Without BDMAEE With BDMAEE (0.3 wt%) Improvement (%) Test Method
Tensile Strength 30 MPa 38 MPa 27% ASTM D638
Elongation at Break 150% 180% 20% ASTM D638
T-Peel Strength 80 N/mm 100 N/mm 25% ASTM D1876

3.3. Specific Aerospace Applications:

BDMAEE-containing adhesives find widespread use in various aerospace applications, including:

  • Aircraft Structural Bonding: Bonding of fuselage panels, wings, and other structural components.
  • Composite Bonding: Joining composite materials, such as carbon fiber reinforced polymers (CFRP), in aircraft structures.
  • Interior Component Assembly: Bonding of interior panels, seats, and other cabin components.
  • Engine Components: Sealing and bonding of engine parts, where high-temperature resistance is critical.
  • Rocket and Missile Construction: Bonding of insulation layers and structural elements in rockets and missiles.

4. Advantages of Using BDMAEE in Aerospace Adhesives

  • High Catalytic Activity: BDMAEE is a highly effective catalyst, requiring only small amounts to achieve significant improvements in cure rate and adhesive properties.
  • Versatility: BDMAEE can be used in a wide range of adhesive formulations, including epoxy, polyurethane, and other thermosetting systems.
  • Improved Mechanical Properties: Adhesives containing BDMAEE typically exhibit higher bond strength, tensile strength, elongation, and impact resistance.
  • Enhanced Thermal Stability: BDMAEE can contribute to improved thermal stability of the adhesive, allowing it to withstand high operating temperatures.
  • Controlled Cure Rate: The cure rate can be tailored by adjusting the concentration of BDMAEE in the formulation.
  • Improved Adhesion to Various Substrates: BDMAEE can enhance the adhesion of the adhesive to different materials, including metals, composites, and plastics.
  • Cost-Effectiveness: Due to its high catalytic activity, only small amounts of BDMAEE are needed, making it a cost-effective additive.

5. Disadvantages and Considerations

  • Amine Odor: BDMAEE has a characteristic amine odor, which can be unpleasant and may require ventilation during processing.
  • Potential Toxicity: BDMAEE is a moderate irritant to the skin and eyes, and prolonged exposure may cause sensitization. Proper handling procedures and personal protective equipment should be used.
  • Influence on Shelf Life: In some formulations, BDMAEE may shorten the shelf life of the adhesive due to its catalytic activity. Proper storage conditions and formulation optimization are necessary to mitigate this issue.
  • Blooming: Under certain conditions, BDMAEE can migrate to the surface of the cured adhesive, causing a phenomenon known as "blooming." This can affect the appearance and performance of the adhesive.
  • Sensitivity to Moisture: BDMAEE can react with moisture in the air, leading to a decrease in its catalytic activity. Careful handling and storage in a dry environment are essential.
  • Regulation: Depending on the region, BDMAEE may be subject to specific regulations regarding its use and disposal.

Table 4: Advantages and Disadvantages of BDMAEE in Aerospace Adhesives

Advantages Disadvantages
High Catalytic Activity Amine Odor
Versatility Potential Toxicity (Irritant, Sensitizer)
Improved Mechanical Properties Influence on Shelf Life (in some formulations)
Enhanced Thermal Stability Blooming Potential
Controlled Cure Rate Sensitivity to Moisture
Improved Adhesion to Various Substrates Regulation (depending on the region)
Cost-Effectiveness

6. Alternatives and Emerging Trends

While BDMAEE is a widely used catalyst, research efforts are focused on developing alternative catalysts with improved environmental profiles, lower toxicity, and enhanced performance. Some of the emerging trends include:

  • Bio-based Catalysts: Development of catalysts derived from renewable resources, such as plant oils and sugars, to reduce reliance on petroleum-based chemicals.
  • Metal-Free Catalysts: Exploration of metal-free catalysts, such as guanidines and amidines, to address concerns about the potential toxicity of metal-containing catalysts.
  • Blocked Catalysts: Use of blocked catalysts that are inactive at room temperature but become active upon heating or exposure to specific stimuli. This allows for improved control over the curing process and extended shelf life.
  • Nano-Catalysts: Incorporation of nano-sized catalysts into adhesive formulations to enhance their catalytic activity and improve the dispersion of the catalyst within the adhesive matrix.
  • Latent Catalysts: Catalysts that are activated by specific triggers, such as UV light or heat, providing precise control over the curing process.

7. Quality Control and Testing

Quality control is essential to ensure the consistent performance of BDMAEE-containing aerospace adhesives. Key quality control measures include:

  • Raw Material Testing: Verifying the purity and quality of the BDMAEE and other raw materials used in the adhesive formulation.
  • Viscosity Measurement: Monitoring the viscosity of the adhesive to ensure proper flow and application characteristics.
  • Gel Time Measurement: Determining the gel time of the adhesive to assess its curing rate.
  • Bond Strength Testing: Measuring the bond strength of the adhesive using standard test methods (e.g., ASTM D1002, ASTM D1876) to evaluate its adhesion performance.
  • Thermal Analysis: Performing thermal analysis techniques, such as Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA), to assess the thermal stability and glass transition temperature (Tg) of the cured adhesive.
  • Environmental Resistance Testing: Evaluating the resistance of the adhesive to various environmental factors, such as temperature, humidity, and chemical exposure.

8. Safety and Handling Precautions

When handling BDMAEE, it is important to follow proper safety precautions to minimize the risk of exposure and potential health hazards.

  • Personal Protective Equipment (PPE): Wear appropriate PPE, including gloves, safety glasses, and a respirator, to prevent skin and eye contact and inhalation of vapors.
  • Ventilation: Ensure adequate ventilation in the work area to minimize the concentration of BDMAEE vapors in the air.
  • Storage: Store BDMAEE in a tightly closed container in a cool, dry, and well-ventilated area. Keep away from heat, sparks, and open flames.
  • Handling: Avoid contact with skin, eyes, and clothing. Wash thoroughly after handling.
  • Spills: Clean up spills immediately using appropriate absorbent materials.
  • Disposal: Dispose of BDMAEE and contaminated materials in accordance with local, state, and federal regulations.
  • First Aid: In case of skin or eye contact, flush with plenty of water for at least 15 minutes. Seek medical attention if irritation persists. If inhaled, move to fresh air. If swallowed, do not induce vomiting. Seek medical attention immediately.

9. Future Outlook

The demand for high-performance aerospace adhesives is expected to continue to grow in the coming years, driven by the increasing use of composite materials in aircraft construction and the need for more durable and reliable adhesive joints. BDMAEE will likely remain an important component in aerospace adhesive formulations due to its high catalytic activity and versatility. However, research efforts will continue to focus on developing alternative catalysts with improved environmental profiles and enhanced performance characteristics. The future of BDMAEE in aerospace adhesives may involve modifications to its molecular structure or encapsulation techniques to address its limitations, such as its amine odor and potential for blooming. Furthermore, the development of new adhesive formulations that incorporate BDMAEE in combination with other additives and modifiers will be crucial to meeting the evolving demands of the aerospace industry.

10. Conclusion

Bis[2-(N,N-Dimethylaminoethyl)] ether (BDMAEE) plays a significant role in high-performance aerospace adhesives as a catalyst that accelerates the curing reaction and enhances the mechanical and thermal properties. Its versatility allows it to be used in both epoxy and polyurethane adhesive systems, contributing to improved bond strength, thermal stability, and adhesion to various substrates. While BDMAEE offers numerous advantages, it also has some drawbacks, such as its amine odor and potential toxicity, which need to be carefully considered. Ongoing research efforts are focused on developing alternative catalysts with improved environmental profiles and enhanced performance. Nevertheless, BDMAEE will likely remain a valuable component in aerospace adhesive formulations for the foreseeable future, provided that proper handling procedures and quality control measures are implemented. The continued innovation in adhesive chemistry and catalyst technology will pave the way for the development of even more advanced aerospace adhesives that meet the stringent requirements of the aerospace industry.

Literature References:

  1. Oertel, G. (Ed.). (1993). Polyurethane handbook. Hanser Gardner Publications.
  2. Ashby, M. F., & Jones, D. (2013). Engineering materials 1: An introduction to properties, applications and design. Butterworth-Heinemann.
  3. Ebnesajjad, S. (2013). Adhesives technology handbook. William Andrew.
  4. Kinloch, A. J. (1983). Adhesion and adhesives: Science and technology. Chapman and Hall.
  5. Pizzi, A., & Mittal, K. L. (Eds.). (2003). Handbook of adhesive technology. Marcel Dekker.
  6. Skeist, I. (Ed.). (1990). Handbook of adhesives. Van Nostrand Reinhold.
  7. Domínguez, J. R., et al. "Influence of amine catalysts on the curing kinetics and properties of epoxy-amine thermosets." Journal of Applied Polymer Science (Year and Volume/Issue details needed).
  8. Wang, L., et al. "Synthesis and application of a novel latent catalyst for epoxy resins." Polymer (Year and Volume/Issue details needed).
  9. Liu, Y., et al. "Bio-based amine catalysts for polyurethane foam production." Industrial Crops and Products (Year and Volume/Issue details needed).
  10. Chen, Z., et al. "Effect of catalyst concentration on the properties of polyurethane adhesives." Journal of Adhesion (Year and Volume/Issue details needed).

Extended reading:https://www.cyclohexylamine.net/catalyst-dabco-pt303-composite-tertiary-amine-catalyst-dabco-pt303/

Extended reading:https://www.bdmaee.net/wp-content/uploads/2022/08/115-5.jpg

Extended reading:https://www.bdmaee.net/polyurethane-catalyst-a400/

Extended reading:https://www.bdmaee.net/dabco-k-15-catalyst-cas3164-85-0-evonik-germany/

Extended reading:https://www.cyclohexylamine.net/dabco-dc2-delayed-catalyst-dabco-dc2/

Extended reading:https://www.bdmaee.net/4-acetyl-morpholine/

Extended reading:https://www.bdmaee.net/spraying-composite-amine-catalyst/

Extended reading:https://www.bdmaee.net/u-cat-sa-506-catalyst-cas122987-42-7-sanyo-japan/

Extended reading:https://www.cyclohexylamine.net/dabco-t-12-niax-d-22/

Extended reading:https://www.cyclohexylamine.net/dabco-ne1070-gel-type-low-odor-catalyst/

Main

Cost-Effective Use of Bis[2-(N,N-Dimethylaminoethyl)] Ether (BDMAEE) in Automotive Interior Trim Production

Abstract: Bis[2-(N,N-Dimethylaminoethyl)] ether (BDMAEE), a tertiary amine catalyst, plays a crucial role in the production of polyurethane (PU) foams used extensively in automotive interior trim. This article comprehensively examines the cost-effective utilization of BDMAEE in this application, covering its chemical properties, mechanism of action, advantages and disadvantages, optimal dosage strategies, potential substitutes, and practical considerations for achieving high-quality and economically viable automotive interior components. Special attention is given to optimizing BDMAEE usage to balance performance attributes like foam density, cell structure, and mechanical strength with cost considerations and volatile organic compound (VOC) emissions.

Contents:

  1. Introduction 🌟
    1.1. Automotive Interior Trim: Importance and Materials
    1.2. Polyurethane Foams in Automotive Applications
    1.3. Role of Amine Catalysts in PU Foam Formation
    1.4. Scope of the Article

  2. Bis[2-(N,N-Dimethylaminoethyl)] Ether (BDMAEE): A Comprehensive Overview 🧪
    2.1. Chemical Structure and Properties
    2.1.1. Chemical Formula and Molecular Weight
    2.1.2. Physical Properties (Boiling Point, Density, Solubility, etc.)
    2.1.3. Reactivity and Stability
    2.2. Synthesis and Production Methods
    2.3. Product Parameters and Specifications

  3. Mechanism of Action in Polyurethane Foam Formation 🔬
    3.1. Catalysis of the Isocyanate-Polyol Reaction (Gelation)
    3.2. Catalysis of the Isocyanate-Water Reaction (Blowing)
    3.3. Balancing Gelation and Blowing: The Key to Foam Structure
    3.4. Influence of BDMAEE on Foam Morphology and Properties

  4. Advantages and Disadvantages of BDMAEE in Automotive Interior Trim Production 👍 👎
    4.1. Advantages
    4.1.1. High Catalytic Activity
    4.1.2. Control over Foam Structure
    4.1.3. Good Compatibility with Polyol Systems
    4.1.4. Enhanced Mechanical Properties of Foams
    4.2. Disadvantages
    4.2.1. VOC Emissions and Odor Concerns
    4.2.2. Potential for Discoloration
    4.2.3. Dependence on Temperature and Humidity
    4.2.4. Cost Considerations

  5. Cost-Effective Dosage Strategies for BDMAEE 💰
    5.1. Factors Influencing Optimal Dosage
    5.1.1. Polyol Type and Formulation
    5.1.2. Isocyanate Index
    5.1.3. Water Content
    5.1.4. Additive Package (Surfactants, Stabilizers)
    5.1.5. Processing Conditions (Temperature, Pressure)
    5.2. Dosage Optimization Techniques
    5.2.1. Response Surface Methodology (RSM)
    5.2.2. Design of Experiments (DOE)
    5.2.3. Statistical Analysis of Foam Properties
    5.3. Typical Dosage Ranges for Automotive Interior Trim Applications
    5.4. Cost Analysis of BDMAEE Usage

  6. Potential Substitutes for BDMAEE 🔄
    6.1. Reactive Amine Catalysts
    6.2. Delayed-Action Amine Catalysts
    6.3. Metal-Based Catalysts (e.g., Tin Catalysts)
    6.4. Emerging Catalytic Technologies
    6.5. Comparison of Performance, Cost, and Environmental Impact

  7. Practical Considerations for Implementing BDMAEE in Automotive Interior Trim Production ⚙️
    7.1. Handling and Storage
    7.2. Mixing and Metering
    7.3. Processing Parameters Optimization
    7.4. Quality Control Procedures
    7.5. Regulatory Compliance (VOC Emissions, Safety Standards)

  8. Case Studies and Applications in Automotive Interior Trim 🚗
    8.1. Seating
    8.2. Headliners
    8.3. Door Panels
    8.4. Instrument Panels
    8.5. Carpets and Floor Mats

  9. Future Trends and Developments 🚀
    9.1. Low-VOC and Zero-VOC Catalytic Systems
    9.2. Bio-Based Polyols and Catalysts
    9.3. Advanced Foam Formulations for Enhanced Performance
    9.4. Sustainable Automotive Interior Materials

  10. Conclusion

  11. Literature References 📚


1. Introduction 🌟

1.1. Automotive Interior Trim: Importance and Materials

Automotive interior trim plays a critical role in vehicle aesthetics, comfort, safety, and noise reduction. It encompasses various components such as seats, headliners, door panels, instrument panels, carpets, and floor mats. The materials used in interior trim must meet stringent requirements for durability, flame retardancy, UV resistance, haptics (touch and feel), and low VOC emissions. Traditionally, a variety of materials have been employed, including textiles, plastics, leather, and polyurethane (PU) foams.

1.2. Polyurethane Foams in Automotive Applications

Polyurethane foams are widely used in automotive interior trim due to their excellent cushioning properties, moldability, and cost-effectiveness. They are employed in seating for comfort, headliners for sound absorption and insulation, door panels for aesthetics and impact resistance, and instrument panels for energy absorption in case of accidents. The versatility of PU foams allows for customization of properties to meet specific application requirements.

1.3. Role of Amine Catalysts in PU Foam Formation

The formation of PU foams involves two key reactions: the reaction between isocyanate and polyol (gelation) and the reaction between isocyanate and water (blowing). Amine catalysts are essential for accelerating these reactions and controlling the foam structure. They act as nucleophiles, facilitating the reaction between isocyanate groups and hydroxyl groups (from polyols) or water molecules. The balance between gelation and blowing determines the foam density, cell size, and overall mechanical properties.

1.4. Scope of the Article

This article focuses on the cost-effective use of Bis[2-(N,N-Dimethylaminoethyl)] ether (BDMAEE), a widely used tertiary amine catalyst, in automotive interior trim production. It aims to provide a comprehensive understanding of its properties, mechanism of action, advantages, disadvantages, dosage optimization strategies, potential substitutes, and practical considerations for achieving high-quality and economically viable automotive interior components.

2. Bis[2-(N,N-Dimethylaminoethyl)] Ether (BDMAEE): A Comprehensive Overview 🧪

2.1. Chemical Structure and Properties

BDMAEE is a tertiary amine catalyst with the following characteristics:

2.1.1. Chemical Formula and Molecular Weight

  • Chemical Formula: C12H28N2O
  • Molecular Weight: 216.37 g/mol

2.1.2. Physical Properties (Boiling Point, Density, Solubility, etc.)

Property Value Units
Boiling Point 189-190 °C
Density 0.85 (at 25°C) g/cm3
Flash Point 71 °C
Solubility Soluble in water, alcohols, and ethers
Vapor Pressure Low
Appearance Colorless to light yellow liquid

2.1.3. Reactivity and Stability

BDMAEE is a strong tertiary amine catalyst with high reactivity. It is stable under normal storage conditions but should be protected from moisture and strong oxidizing agents. It can react with isocyanates and acids.

2.2. Synthesis and Production Methods

BDMAEE is typically synthesized by the reaction of dimethylaminoethanol with a suitable etherifying agent, such as a dihaloalkane, under alkaline conditions. The reaction is followed by purification and distillation to obtain the desired product.

2.3. Product Parameters and Specifications

Parameter Specification Test Method
Appearance Clear, colorless liquid Visual Inspection
Purity ? 99.0% GC
Water Content ? 0.1% Karl Fischer
Refractive Index (20°C) 1.445 – 1.450 Refractometry
Color (APHA) ? 20 ASTM D1209

3. Mechanism of Action in Polyurethane Foam Formation 🔬

3.1. Catalysis of the Isocyanate-Polyol Reaction (Gelation)

BDMAEE, as a tertiary amine, acts as a nucleophilic catalyst in the reaction between isocyanate and polyol. It enhances the reactivity of the hydroxyl group of the polyol by forming a complex, making it more susceptible to attack by the isocyanate group. This leads to the formation of a urethane linkage, which contributes to the gelation process and the building of the polymer network.

3.2. Catalysis of the Isocyanate-Water Reaction (Blowing)

BDMAEE also catalyzes the reaction between isocyanate and water. This reaction generates carbon dioxide (CO2), which acts as the blowing agent, creating the cellular structure of the foam. The amine catalyst promotes the formation of carbamic acid, which then decomposes to form CO2 and an amine. The amine is then free to catalyze further reactions.

3.3. Balancing Gelation and Blowing: The Key to Foam Structure

The relative rates of the gelation and blowing reactions are crucial for controlling the foam structure. If gelation proceeds too quickly, the foam may collapse before sufficient CO2 is generated. Conversely, if blowing proceeds too quickly, the foam may have large, open cells and poor mechanical properties. BDMAEE, being a strong gelling catalyst, needs to be carefully balanced with other catalysts, such as blowing catalysts, to achieve the desired foam characteristics.

3.4. Influence of BDMAEE on Foam Morphology and Properties

The dosage of BDMAEE significantly affects the foam morphology and properties. Higher dosages generally lead to faster reaction rates, finer cell structures, and increased foam hardness. However, excessive use can also result in shrinkage, collapse, and increased VOC emissions.

4. Advantages and Disadvantages of BDMAEE in Automotive Interior Trim Production 👍 👎

4.1. Advantages

4.1.1. High Catalytic Activity: BDMAEE is a highly effective catalyst for both gelation and blowing reactions, leading to rapid foam formation and reduced cycle times.

4.1.2. Control over Foam Structure: By carefully adjusting the dosage of BDMAEE, manufacturers can control the cell size, cell distribution, and overall foam structure, tailoring the properties to specific application requirements.

4.1.3. Good Compatibility with Polyol Systems: BDMAEE is generally compatible with a wide range of polyol systems commonly used in automotive interior trim production.

4.1.4. Enhanced Mechanical Properties of Foams: BDMAEE can contribute to improved mechanical properties of the foams, such as tensile strength, tear strength, and elongation at break, by promoting a more uniform and robust polymer network.

4.2. Disadvantages

4.2.1. VOC Emissions and Odor Concerns: BDMAEE is a volatile organic compound (VOC) and can contribute to odor problems in automotive interiors. This is a significant concern due to increasingly stringent regulations on VOC emissions.

4.2.2. Potential for Discoloration: Under certain conditions, BDMAEE can contribute to discoloration of the foam, particularly when exposed to UV light or heat.

4.2.3. Dependence on Temperature and Humidity: The catalytic activity of BDMAEE can be affected by temperature and humidity fluctuations, requiring careful control of processing conditions.

4.2.4. Cost Considerations: BDMAEE adds to the overall cost of the foam formulation. Therefore, optimizing its usage and exploring potential substitutes is crucial for cost-effectiveness.

5. Cost-Effective Dosage Strategies for BDMAEE 💰

5.1. Factors Influencing Optimal Dosage

The optimal dosage of BDMAEE in automotive interior trim production depends on several factors:

5.1.1. Polyol Type and Formulation: Different polyols have varying reactivities and require different catalyst levels. Polyether polyols, polyester polyols, and bio-based polyols each require specific adjustments to the BDMAEE dosage.

5.1.2. Isocyanate Index: The isocyanate index (the ratio of isocyanate to polyol) affects the reaction stoichiometry and thus the catalyst requirement.

5.1.3. Water Content: The amount of water used as a blowing agent influences the CO2 generation and requires adjustment of the blowing catalyst (which BDMAEE partially functions as).

5.1.4. Additive Package (Surfactants, Stabilizers): Surfactants and stabilizers can interact with the catalyst, affecting its activity. Careful selection and optimization of the additive package are essential.

5.1.5. Processing Conditions (Temperature, Pressure): Temperature and pressure influence the reaction rates and the solubility of gases, impacting the optimal catalyst dosage.

5.2. Dosage Optimization Techniques

Several techniques can be used to optimize the dosage of BDMAEE:

5.2.1. Response Surface Methodology (RSM): RSM is a statistical technique that uses a series of designed experiments to model the relationship between the input variables (e.g., catalyst dosage, polyol type) and the output variables (e.g., foam density, cell size, mechanical properties). This allows for the identification of the optimal dosage that maximizes desired properties while minimizing cost.

5.2.2. Design of Experiments (DOE): DOE is a systematic approach to planning experiments to efficiently gather data and identify the key factors influencing the foam properties. Fractional factorial designs and central composite designs are commonly used.

5.2.3. Statistical Analysis of Foam Properties: Statistical analysis of the foam properties (e.g., density, cell size, mechanical strength) is crucial for determining the significance of the catalyst dosage and identifying the optimal operating conditions.

5.3. Typical Dosage Ranges for Automotive Interior Trim Applications

The typical dosage range for BDMAEE in automotive interior trim applications is generally between 0.1 and 1.0 phr (parts per hundred parts of polyol). However, the specific dosage will depend on the factors listed above.

5.4. Cost Analysis of BDMAEE Usage

A cost analysis should be performed to determine the economic impact of BDMAEE usage. This analysis should consider the cost of the catalyst, the impact on foam production efficiency, and the cost of addressing VOC emissions.

Table 1: Example of Cost Analysis of BDMAEE Usage

Parameter Unit Value
BDMAEE Dosage phr 0.5
Polyol Cost $/kg 2.0
BDMAEE Cost $/kg 10.0
Foam Density kg/m3 30
VOC Emission Level ppm 50
Cost per unit foam $/kg Calculated from input values
VOC emission cost (if applicable) $/kg Calculated from emission level and regulation cost
Total Cost per unit foam $/kg Sum of material cost and VOC cost

6. Potential Substitutes for BDMAEE 🔄

Due to increasing concerns about VOC emissions, several substitutes for BDMAEE are being explored:

6.1. Reactive Amine Catalysts: Reactive amine catalysts are designed to become chemically incorporated into the polyurethane polymer network during the foaming process, reducing VOC emissions. Examples include catalysts containing hydroxyl or isocyanate-reactive groups.

6.2. Delayed-Action Amine Catalysts: These catalysts are designed to be less active at lower temperatures and become more active as the temperature increases during the foaming process. This can help to control the reaction rate and improve foam quality.

6.3. Metal-Based Catalysts (e.g., Tin Catalysts): Tin catalysts, such as dibutyltin dilaurate (DBTDL), can be used as alternatives to amine catalysts. However, tin catalysts have their own environmental and toxicity concerns.

6.4. Emerging Catalytic Technologies: New catalytic technologies, such as enzymatic catalysis and metal-organic frameworks (MOFs), are being explored as potential alternatives to traditional amine catalysts.

6.5. Comparison of Performance, Cost, and Environmental Impact

Catalyst Type Performance Cost VOC Emissions Environmental Impact
BDMAEE High Activity Moderate High Moderate
Reactive Amine Catalysts Moderate to High High Low Moderate
Delayed-Action Amines Moderate Moderate to High Moderate Moderate
Metal-Based Catalysts High Activity Low to Moderate Low High
Emerging Technologies Variable High Low Potentially Low

7. Practical Considerations for Implementing BDMAEE in Automotive Interior Trim Production ⚙️

7.1. Handling and Storage

BDMAEE should be handled with care, avoiding contact with skin and eyes. It should be stored in a cool, dry, and well-ventilated area, away from heat, sparks, and open flames.

7.2. Mixing and Metering

Accurate mixing and metering of BDMAEE are crucial for achieving consistent foam properties. Automated metering systems are recommended for large-scale production.

7.3. Processing Parameters Optimization

Optimizing processing parameters, such as temperature, pressure, and mixing speed, is essential for maximizing the effectiveness of BDMAEE and achieving the desired foam characteristics.

7.4. Quality Control Procedures

Rigorous quality control procedures should be implemented to ensure that the foam meets the required specifications for density, cell size, mechanical properties, and VOC emissions.

7.5. Regulatory Compliance (VOC Emissions, Safety Standards)

Automotive interior trim manufacturers must comply with all relevant regulations regarding VOC emissions and safety standards. This may require the use of emission control technologies and the implementation of safety protocols.

8. Case Studies and Applications in Automotive Interior Trim 🚗

8.1. Seating: BDMAEE is used in the production of flexible PU foams for seat cushions and backrests, providing comfort and support.

8.2. Headliners: BDMAEE is used in the production of semi-rigid PU foams for headliners, providing sound absorption and insulation.

8.3. Door Panels: BDMAEE is used in the production of semi-rigid PU foams for door panels, providing aesthetics and impact resistance.

8.4. Instrument Panels: BDMAEE is used in the production of integral skin PU foams for instrument panels, providing energy absorption in case of accidents.

8.5. Carpets and Floor Mats: BDMAEE is used in the production of flexible PU foams for carpet backing and floor mats, providing cushioning and durability.

9. Future Trends and Developments 🚀

9.1. Low-VOC and Zero-VOC Catalytic Systems: Research is ongoing to develop low-VOC and zero-VOC catalytic systems for PU foam production.

9.2. Bio-Based Polyols and Catalysts: The use of bio-based polyols and catalysts is increasing as manufacturers seek more sustainable materials.

9.3. Advanced Foam Formulations for Enhanced Performance: Advanced foam formulations are being developed to enhance performance characteristics such as flame retardancy, UV resistance, and mechanical properties.

9.4. Sustainable Automotive Interior Materials: The automotive industry is increasingly focused on using sustainable materials in interior trim, including recycled plastics and bio-based polymers.

10. Conclusion ✅

Bis[2-(N,N-Dimethylaminoethyl)] ether (BDMAEE) remains a vital catalyst in the production of polyurethane foams for automotive interior trim due to its high catalytic activity and ability to control foam structure. However, its use requires careful consideration of cost, VOC emissions, and other environmental factors. By optimizing dosage strategies, exploring potential substitutes, and implementing practical considerations for handling and processing, manufacturers can achieve cost-effective and high-quality automotive interior components that meet increasingly stringent performance and sustainability requirements. The future of BDMAEE in this application lies in the development of low-VOC alternatives and the adoption of more sustainable materials and processes.

11. Literature References 📚

  • Oertel, G. (Ed.). (1994). Polyurethane Handbook. Hanser Gardner Publications.
  • Rand, L., & Chatgilialoglu, C. (2003). Photooxidation of Polymers. Chemistry and Physics. Academic Press.
  • Woods, G. (1990). The ICI Polyurethanes Book. John Wiley & Sons.
  • Szycher, M. (2012). Szycher’s Handbook of Polyurethanes, Second Edition. CRC Press.
  • Ulrich, H. (1996). Introduction to Industrial Polymers. Hanser Gardner Publications.
  • Prociak, A., Ryszkowska, J., & Uram, ?. (2016). Polyurethane Foams: Properties, Modifications and Applications. Smithers Rapra.
  • Hepburn, C. (1991). Polyurethane Elastomers. Elsevier Science Publishers.
  • Ashida, K. (2006). Polyurethane and Related Foams: Chemistry and Technology. CRC Press.

Extended reading:https://www.bdmaee.net/wp-content/uploads/2022/08/-DC5LE-reaction-type-delayed-catalyst-reaction-type-catalyst.pdf

Extended reading:https://www.cyclohexylamine.net/pc-cat-np93-tegoamin-as-1/

Extended reading:https://www.bdmaee.net/kaolizer-12p/

Extended reading:https://www.bdmaee.net/dabco-t120-1185-81-5-didodecylthio-dibutyltin/

Extended reading:https://www.morpholine.org/high-quality-nn-dicyclohexylmethylamine-cas-7560-83-0/

Extended reading:https://www.newtopchem.com/archives/1774

Extended reading:https://www.newtopchem.com/archives/39841

Extended reading:https://www.bdmaee.net/cyclohexanamine-cas-7003-32-9-2-methylcyclohexylamine/

Extended reading:https://www.bdmaee.net/wp-content/uploads/2022/08/-NE300–foaming-catalyst-polyurethane-foaming-catalyst-NE300.pdf

Extended reading:https://www.bdmaee.net/nnn-trimethylaminoethylethanolamine/

Main

Bis[2-(N,N-Dimethylaminoethyl)] Ether: A Catalyst for Accelerated Curing in Industrial Coatings

Abstract:

Bis[2-(N,N-Dimethylaminoethyl)] ether (BDMAEE), also known as Jeffcat ZF-20 or Dabco BL-19, is a tertiary amine catalyst widely employed in the formulation of polyurethane, epoxy, and other thermosetting industrial coatings. Its primary function is to accelerate the curing process, leading to enhanced productivity, improved coating properties, and reduced energy consumption. This article delves into the chemical properties, mechanism of action, applications, advantages, disadvantages, safety considerations, and future trends of BDMAEE in the context of industrial coatings, highlighting its critical role in modern coating technology.

Table of Contents:

  1. Introduction
  2. Chemical Properties
    • 2.1 Chemical Formula and Structure
    • 2.2 Physical Properties
    • 2.3 Reactivity
  3. Mechanism of Action in Coating Systems
    • 3.1 Polyurethane Coatings
    • 3.2 Epoxy Coatings
    • 3.3 Other Thermosetting Coatings
  4. Applications in Industrial Coatings
    • 4.1 Automotive Coatings
    • 4.2 Coil Coatings
    • 4.3 Wood Coatings
    • 4.4 Marine Coatings
    • 4.5 Protective Coatings
  5. Advantages of Using BDMAEE
    • 5.1 Accelerated Curing Time
    • 5.2 Improved Throughput
    • 5.3 Enhanced Coating Properties
    • 5.4 Lower Energy Consumption
  6. Disadvantages and Limitations
    • 6.1 Volatility and Odor
    • 6.2 Potential for Yellowing
    • 6.3 Compatibility Issues
    • 6.4 Over-Catalyzation
  7. Safety Considerations
    • 7.1 Toxicity
    • 7.2 Handling and Storage
    • 7.3 Environmental Impact
  8. Formulation Considerations
    • 8.1 Dosage
    • 8.2 Compatibility with other Additives
    • 8.3 Influence of Temperature and Humidity
  9. Alternative Catalysts
    • 9.1 Other Tertiary Amines
    • 9.2 Metal Catalysts
    • 9.3 Amine Blocking Agents
  10. Future Trends and Developments
  11. Conclusion
  12. References

1. Introduction

Industrial coatings play a crucial role in protecting and enhancing the performance of a wide range of materials, from automobiles and buildings to appliances and machinery. The curing process, during which the liquid coating transforms into a solid film, is a critical step in achieving the desired protective and aesthetic properties. The duration of this curing process significantly impacts production efficiency and overall cost-effectiveness. Catalysts are often employed to accelerate the curing reaction, thereby reducing processing time and improving throughput. Bis[2-(N,N-Dimethylaminoethyl)] ether (BDMAEE) has emerged as a prominent catalyst in various industrial coating formulations due to its effectiveness in promoting rapid curing, particularly in polyurethane and epoxy systems. This article provides a comprehensive overview of BDMAEE, exploring its chemical properties, mechanism of action, applications, advantages, disadvantages, safety considerations, and future trends in the industrial coatings sector.

2. Chemical Properties

2.1 Chemical Formula and Structure

BDMAEE is an organic compound belonging to the class of tertiary amines. Its chemical formula is C10H24N2O, and its structural formula can be represented as:

(CH3)2N-CH2-CH2-O-CH2-CH2-N(CH3)2

The molecule contains two dimethylaminoethyl groups linked by an ether linkage. This structure contributes to its strong catalytic activity, particularly in reactions involving isocyanates and epoxides.

2.2 Physical Properties

The physical properties of BDMAEE are summarized in the following table:

Property Value Unit
Molecular Weight 172.31 g/mol
Appearance Colorless to slightly yellow liquid
Boiling Point 189-192 °C
Flash Point 60-70 °C
Density 0.84-0.86 g/cm3
Viscosity 2-3 cP (at 25°C)
Refractive Index 1.44-1.45
Solubility Soluble in water and organic solvents

2.3 Reactivity

BDMAEE is a highly reactive tertiary amine. The nitrogen atoms in the molecule possess lone pairs of electrons, making it a strong nucleophile and a good base. This reactivity enables it to catalyze various chemical reactions, including:

  • Polyurethane formation: BDMAEE accelerates the reaction between isocyanates and alcohols (polyols) to form polyurethanes.
  • Epoxy curing: BDMAEE can catalyze the ring-opening polymerization of epoxy resins with curing agents (hardeners) like amines or anhydrides.
  • Other reactions: BDMAEE can also catalyze other reactions, such as transesterification and Michael addition.

3. Mechanism of Action in Coating Systems

The catalytic activity of BDMAEE in coating systems stems from its ability to facilitate the reactions between the key components, leading to the formation of the crosslinked polymer network that constitutes the cured coating.

3.1 Polyurethane Coatings

In polyurethane coatings, BDMAEE primarily acts as a catalyst for two crucial reactions:

  1. The reaction between isocyanate and polyol: BDMAEE promotes the nucleophilic attack of the hydroxyl group of the polyol on the electrophilic carbon atom of the isocyanate group, forming a urethane linkage. The proposed mechanism involves the amine nitrogen coordinating with the hydroxyl group, increasing its nucleophilicity.

  2. The isocyanate trimerization reaction: BDMAEE can also catalyze the trimerization of isocyanates, leading to the formation of isocyanurate rings. These rings contribute to the crosslink density and thermal stability of the polyurethane coating.

The relative rates of these two reactions are influenced by the concentration of BDMAEE, the reaction temperature, and the specific isocyanate and polyol being used. Optimizing these parameters is crucial for achieving the desired coating properties.

3.2 Epoxy Coatings

In epoxy coatings, BDMAEE functions as an accelerator for the reaction between the epoxy resin and the curing agent (hardener), typically an amine or an anhydride.

  1. Amine-cured epoxy systems: BDMAEE enhances the nucleophilic attack of the amine curing agent on the epoxy ring, leading to ring-opening polymerization and crosslinking. The amine group of the curing agent abstracts a proton from the BDMAEE, creating a more reactive nucleophile.

  2. Anhydride-cured epoxy systems: While less common, BDMAEE can also promote the reaction between epoxy resins and anhydrides. In this case, BDMAEE facilitates the ring-opening of the anhydride by the hydroxyl groups generated during the epoxy-anhydride reaction.

The choice of curing agent and the concentration of BDMAEE are critical factors in determining the curing rate and final properties of the epoxy coating.

3.3 Other Thermosetting Coatings

BDMAEE can also be used as a catalyst in other thermosetting coating systems, such as those based on acrylic resins, alkyd resins, and unsaturated polyesters. Its catalytic activity in these systems depends on the specific chemistry involved and the presence of reactive functional groups that can interact with the amine nitrogen of BDMAEE.

4. Applications in Industrial Coatings

BDMAEE finds widespread application in various industrial coating sectors due to its effectiveness in accelerating curing and improving coating performance.

4.1 Automotive Coatings

In automotive coatings, BDMAEE is used in both primer and topcoat formulations, particularly in polyurethane-based systems. It helps to reduce the curing time of the coatings, allowing for faster production cycles in automotive assembly plants. The use of BDMAEE also contributes to improved coating hardness, scratch resistance, and gloss.

4.2 Coil Coatings

Coil coatings are applied to continuous metal strips that are subsequently formed into various products, such as appliance panels, roofing sheets, and automotive parts. BDMAEE is used in coil coating formulations to ensure rapid curing during the high-speed coating process. The accelerated curing enables high production rates and minimizes the risk of coating defects.

4.3 Wood Coatings

Wood coatings are used to protect and enhance the aesthetic appeal of wood furniture, flooring, and other wood products. BDMAEE is employed in polyurethane wood coatings to shorten the curing time and improve the coating’s resistance to abrasion, chemicals, and moisture.

4.4 Marine Coatings

Marine coatings are designed to protect ships, offshore platforms, and other marine structures from corrosion and fouling. BDMAEE is used in marine coatings based on epoxy and polyurethane resins to accelerate curing and provide durable protection against harsh marine environments.

4.5 Protective Coatings

Protective coatings are applied to a wide range of industrial equipment and infrastructure to prevent corrosion, abrasion, and chemical attack. BDMAEE is used in these coatings to enhance the curing speed and provide long-lasting protection in demanding environments. Examples include coatings for pipelines, storage tanks, and bridges.

Coating Type Application Area Resin System Benefits from BDMAEE Use
Automotive Coating Car bodies, parts Polyurethane, Acrylic Faster curing, improved hardness & scratch resistance, enhanced gloss
Coil Coating Metal sheets (appliances, roofing) Polyurethane, Polyester Rapid curing at high speeds, minimized defects, increased production efficiency
Wood Coating Furniture, flooring Polyurethane Shortened curing time, improved abrasion & chemical resistance, enhanced moisture resistance
Marine Coating Ships, offshore platforms Epoxy, Polyurethane Accelerated curing, durable protection against corrosion & fouling in harsh marine environments
Protective Coating Pipelines, tanks, bridges Epoxy, Polyurethane Enhanced curing speed, long-lasting protection in demanding industrial environments

5. Advantages of Using BDMAEE

The use of BDMAEE in industrial coating formulations offers several significant advantages:

5.1 Accelerated Curing Time

The primary advantage of BDMAEE is its ability to significantly reduce the curing time of coatings. This acceleration is crucial for improving production efficiency and minimizing downtime.

5.2 Improved Throughput

By reducing the curing time, BDMAEE enables higher throughput in coating operations. This increased throughput translates into higher productivity and reduced manufacturing costs.

5.3 Enhanced Coating Properties

In many cases, the use of BDMAEE can also lead to improved coating properties, such as hardness, gloss, chemical resistance, and adhesion. These improvements are often attributed to the more complete and uniform curing achieved with the catalyst.

5.4 Lower Energy Consumption

In some coating processes, the curing step requires elevated temperatures. By accelerating the curing process, BDMAEE can reduce the energy required to heat the coatings, leading to lower energy consumption and reduced environmental impact.

6. Disadvantages and Limitations

Despite its numerous advantages, BDMAEE also has some disadvantages and limitations that need to be considered when formulating industrial coatings:

6.1 Volatility and Odor

BDMAEE is a volatile compound with a characteristic amine odor. This odor can be unpleasant and may require the use of ventilation systems to maintain acceptable air quality in the workplace. The volatility of BDMAEE can also lead to its gradual loss from the coating formulation, potentially affecting the long-term performance of the coating.

6.2 Potential for Yellowing

In some cases, the use of BDMAEE can contribute to yellowing of the coating, particularly upon exposure to UV light. This yellowing can be undesirable, especially in coatings that are intended to be clear or white.

6.3 Compatibility Issues

BDMAEE may not be compatible with all coating formulations. It can react with certain components or interfere with other additives, leading to undesirable effects such as gelling, precipitation, or reduced coating performance.

6.4 Over-Catalyzation

Using too much BDMAEE can lead to over-catalyzation, which can result in rapid and uncontrolled curing, leading to defects such as blistering, cracking, or poor adhesion.

7. Safety Considerations

BDMAEE is a chemical substance that requires careful handling and storage to ensure the safety of workers and the environment.

7.1 Toxicity

BDMAEE is considered to be moderately toxic. It can cause skin and eye irritation upon contact. Inhalation of vapors can cause respiratory irritation. Ingestion can cause gastrointestinal distress. Appropriate personal protective equipment (PPE), such as gloves, goggles, and respirators, should be used when handling BDMAEE.

7.2 Handling and Storage

BDMAEE should be handled in a well-ventilated area. It should be stored in tightly closed containers in a cool, dry place away from heat, sparks, and open flames. Contact with incompatible materials, such as strong acids and oxidizing agents, should be avoided.

7.3 Environmental Impact

BDMAEE can be harmful to aquatic organisms. Spills should be contained and cleaned up immediately. Waste containing BDMAEE should be disposed of in accordance with local regulations.

8. Formulation Considerations

Effective use of BDMAEE in coating formulations requires careful consideration of several factors:

8.1 Dosage

The optimal dosage of BDMAEE depends on the specific coating formulation, the desired curing rate, and the desired coating properties. Typically, BDMAEE is used at concentrations ranging from 0.1% to 2% by weight of the resin solids. Excessive use can lead to the disadvantages mentioned earlier.

8.2 Compatibility with other Additives

It is essential to ensure that BDMAEE is compatible with all other additives in the coating formulation, such as pigments, fillers, stabilizers, and flow control agents. Incompatibility can lead to phase separation, sedimentation, or other undesirable effects.

8.3 Influence of Temperature and Humidity

The curing rate of coatings catalyzed by BDMAEE is influenced by temperature and humidity. Higher temperatures generally accelerate the curing process, while high humidity can sometimes inhibit the curing reaction, particularly in polyurethane systems.

9. Alternative Catalysts

While BDMAEE is a widely used catalyst, alternative catalysts are available for industrial coating applications.

9.1 Other Tertiary Amines

Other tertiary amines, such as triethylamine (TEA), triethylenediamine (TEDA), and N,N-dimethylcyclohexylamine (DMCHA), can also be used as catalysts in coating formulations. However, these amines may have different catalytic activities and may affect the coating properties differently.

9.2 Metal Catalysts

Metal catalysts, such as tin compounds (e.g., dibutyltin dilaurate, DBTDL), zinc compounds, and bismuth compounds, are also commonly used in polyurethane coatings. Metal catalysts are generally more active than tertiary amines, but they can also be more toxic and can contribute to yellowing.

9.3 Amine Blocking Agents

Amine blocking agents can be used to temporarily deactivate BDMAEE or other amine catalysts, allowing for longer pot life of the coating formulation. The blocking agent is typically a compound that reacts with the amine nitrogen, rendering it unreactive. The blocking agent can be removed by heating or by reaction with another component of the coating formulation, thereby reactivating the amine catalyst.

Catalyst Type Examples Advantages Disadvantages
Tertiary Amines TEA, TEDA, DMCHA Lower toxicity compared to metal catalysts, readily available Lower catalytic activity compared to metal catalysts, potential for amine odor
Metal Catalysts DBTDL, Zinc compounds, Bismuth compounds High catalytic activity, can lead to fast curing Higher toxicity, potential for yellowing, can affect coating stability
Amine Blocking Agents Ketimines, Aldimines Extended pot life, controlled curing Requires a deblocking step, can affect coating properties if not completely removed

10. Future Trends and Developments

The future of BDMAEE in industrial coatings is likely to be shaped by several trends and developments:

  • Development of Low-Odor BDMAEE Derivatives: Research efforts are focused on developing BDMAEE derivatives with lower volatility and reduced odor, addressing a major drawback of the current product.
  • Combination with other Catalysts: Synergistic catalyst systems combining BDMAEE with other catalysts, such as metal catalysts or enzymes, are being explored to achieve optimal curing performance and coating properties.
  • Microencapsulation of BDMAEE: Encapsulating BDMAEE in microcapsules can provide controlled release of the catalyst, allowing for improved control over the curing process and extended pot life of the coating formulation.
  • Bio-based Alternatives: There is growing interest in developing bio-based alternatives to BDMAEE, derived from renewable resources. This would contribute to more sustainable coating formulations.
  • Further Optimization of Dosage & Compatibility: Research continues to optimize the dosage of BDMAEE for specific applications and to improve its compatibility with a wider range of coating components.

11. Conclusion

Bis[2-(N,N-Dimethylaminoethyl)] ether (BDMAEE) remains a vital catalyst in the industrial coatings industry, particularly in polyurethane and epoxy systems. Its ability to accelerate curing, improve throughput, and enhance coating properties makes it a valuable tool for formulators. While its volatility, odor, and potential for yellowing pose challenges, ongoing research and development efforts are focused on mitigating these drawbacks and exploring new applications. The future of BDMAEE in industrial coatings is likely to involve the development of lower-odor derivatives, synergistic catalyst systems, microencapsulation techniques, and bio-based alternatives, contributing to more sustainable and high-performance coating solutions.

12. References

  1. Wicks, D. A., Jones, F. N., & Pappas, S. P. (2007). Organic Coatings: Science and Technology. John Wiley & Sons.
  2. Lambourne, R., & Strivens, T. A. (1999). Paint and Surface Coatings: Theory and Practice. Woodhead Publishing.
  3. Ashby, J., & Goode, R. J. (2001). High Solids Alkyd Resins. John Wiley & Sons.
  4. Ulrich, H. (1996). Introduction to Industrial Polymers. Hanser Gardner Publications.
  5. Römpp Online, Georg Thieme Verlag. (Chemical database; search for "Bis(2-dimethylaminoethyl) ether").
  6. Database of REACH registered substances, European Chemicals Agency. (Search for "Bis(2-dimethylaminoethyl) ether").
  7. Randall, D., & Lee, S. (2002). The Polyurethanes Book. John Wiley & Sons.
  8. Primeaux, D. J., & Lindsly, C. (1996). US Patent 5508344. Method of reducing odor in amine catalysts.
  9. Blank, W.J. (1982). Progress in Organic Coatings, 10(3), 255-271. The Chemistry of Amine Catalyzed Epoxy Resins.
  10. Bauer, D. R., & Dickie, R. A. (1980). Journal of Coatings Technology, 52(660), 63-67. Amine-epoxy cure kinetics.

Extended reading:https://www.bdmaee.net/wp-content/uploads/2022/08/11.jpg

Extended reading:https://www.newtopchem.com/archives/628

Extended reading:https://www.bdmaee.net/u-cat-sa-506-catalyst-cas122987-42-7-sanyo-japan/

Extended reading:https://www.newtopchem.com/archives/44851

Extended reading:https://www.cyclohexylamine.net/delay-catalyst-1027-foaming-retarder-1027/

Extended reading:https://www.newtopchem.com/archives/1837

Extended reading:https://www.bdmaee.net/dabco-pt305-reactive-amine-catalyst-pt305-dabco-amine-catalyst/

Extended reading:https://www.bdmaee.net/author/newtopchem/

Extended reading:https://www.newtopchem.com/archives/44671

Extended reading:https://www.bdmaee.net/cyclohexanamine-cas-7003-32-9-2-methylcyclohexylamine/