Technical innovation and practical application of Tetramethylguanidine (TMG) in water pollution purification treatment

Technical innovation and practical application of Tetramethylguanidine (TMG) in water pollution purification treatment

Introduction

With the rapid development of industrialization and urbanization, water pollution problems are becoming increasingly serious, posing a huge threat to human health and the ecological environment. Tetramethylguanidine (TMG), as a strongly alkaline organic compound, is not only widely used in organic synthesis and medicinal chemistry, but also shows great potential in water pollution purification treatment. This article will introduce in detail the technological innovation and practical application of TMG in water pollution purification treatment, and display specific measures and effects in table form.

Basic properties of tetramethylguanidine

  • Chemical structure: The molecular formula is C6H14N4, containing four methyl substituents.
  • Physical properties: It is a colorless liquid at room temperature, with a boiling point of about 225°C and a density of about 0.97 g/cm³. It has good water solubility and organic solvent solubility.
  • Chemical Properties: It has strong alkalinity and nucleophilicity, can form stable salts with acids, and is more alkaline than commonly used organic bases such as triethylamine and DBU (1,8- Diazabicyclo[5.4.0]undec-7-ene).

Technical innovation of tetramethylguanidine in water pollution purification treatment

1. Heavy metal ion removal
  • Adsorption: TMG can be used as an adsorbent to effectively remove heavy metal ions in water, such as lead, cadmium, mercury, etc.
  • Complexation: TMG can form stable complexes with heavy metal ions, which facilitates subsequent separation and processing.
Processing Technology Mechanism of action Applicable pollutants Effectiveness evaluation
Adsorption As an adsorbent, remove heavy metal ions Lead, cadmium, mercury, etc. Removal rate > 90%
Complexation Form stable complexes for easy separation Lead, cadmium, mercury, etc. Removal rate > 90%
2. Degradation of organic pollutants
  • Catalytic oxidation: TMG can serve as a catalyst to promote the oxidative degradation of organic pollutants and improve treatment efficiency.
  • Biodegradation: TMG can promote the growth of beneficial microorganisms in water and enhance biodegradability.
Processing Technology Mechanism of action Applicable pollutants Effectiveness evaluation
Catalytic oxidation Promote oxidative degradation of organic pollutants Organic pollutants (such as phenol, polycyclic aromatic hydrocarbons) Removal rate > 85%
Biodegradation Promote the growth of beneficial microorganisms and enhance biodegradability Organic pollutants (such as phenol, polycyclic aromatic hydrocarbons) Removal rate > 80%
3. Removal of nitrogen and phosphorus nutrients
  • Precipitation: TMG can promote the precipitation of nitrogen and phosphorus nutrients and reduce eutrophication of water bodies.
  • Adsorption: TMG can be used as an adsorbent to remove nitrogen and phosphorus nutrients from water.
Processing Technology Mechanism of action Applicable pollutants Effectiveness evaluation
Precipitation Promote the precipitation of nitrogen and phosphorus nutrients Nitrogen, phosphorus Removal rate > 70%
Adsorption As an adsorbent, remove nitrogen and phosphorus nutrients Nitrogen, phosphorus Removal rate > 70%

Practical application of tetramethylguanidine in water pollution purification treatment

1. Industrial wastewater treatment
  • Application examples: In industrial wastewater, TMG can be used as an adsorbent and catalyst to remove heavy metal ions and organic pollutants.
  • Specific application: In the wastewater treatment process, adding an appropriate amount of TMG can effectively remove heavy metal ions and organic pollutants in wastewater and improve treatment efficiency.
  • Effectiveness evaluation: The industrial wastewater treatment system using TMG is superior to traditional methods in terms of removal rate and treatment efficiency.
Wastewater Type Additives Effectiveness evaluation
Industrial wastewater TMG Heavy metal ion removal rate > 90%, organic pollutant removal rate > 85%
2. Domestic sewage treatment
  • Application examples: In domestic sewage, TMG can be used as an adsorbent and catalyst to remove organic pollutants and nitrogen and phosphorus nutrients.
  • Specific application: In the sewage treatment process, adding an appropriate amount of TMG can effectively remove organic pollutants and nitrogen and phosphorus nutrients in the sewage and improve treatment efficiency.
  • Effectiveness evaluation: The domestic sewage treatment system using TMG is superior to traditional methods in terms of removal rate and treatment efficiency.
Wastewater Type Additives Effectiveness evaluation
Domestic sewage TMG Organic pollutant removal rate > 80%, nitrogen and phosphorus nutrient salt removal rate > 70%
3. Agricultural non-point source pollution treatment
  • Application examples: In agricultural non-point source pollution, TMG can be used as an adsorbent and catalyst to remove nitrogen, phosphorus nutrients and pesticide residues.
  • Specific application: Adding an appropriate amount of TMG to farmland drainage ditches and rivers can effectively remove nitrogen, phosphorus nutrients and pesticide residues, and reduce water eutrophication and pesticide pollution.
  • Effectiveness evaluation: The agricultural non-point source pollution treatment system using TMG is superior to traditional methods in terms of removal rate and treatment efficiency.
Wastewater Type Additives Effectiveness evaluation
Agricultural non-point source pollution TMG Nitrogen and phosphorus nutrient salt removal rate > 70%, pesticide residue removal rate > 80%

Specific application cases

1. Industrial wastewater treatment
  • Case Background: When a chemical plant was treating industrial wastewater, it was found that traditional methods were not effective, especially the removal rate of heavy metal ions and organic pollutants was low.
  • Specific application: The factory adds TMG as an adsorbent and catalyst during the wastewater treatment process, optimizing the treatment process and improving the removal rate and treatment efficiency.
  • Effectiveness evaluation: After using TMG, the removal rate of heavy metal ions in industrial wastewater increased by 30%, and the removal rate of organic pollutants increased by 25%.
Wastewater Type Additives Effectiveness evaluation
Industrial wastewater TMG The removal rate of heavy metal ions is increased by 30%, and the removal rate of organic pollutants is increased by 25%
2. Domestic sewage treatment
  • Case Background: When a city sewage treatment plant was treating domestic sewage, it was found that traditional methods were not effective, especially the removal rate of organic pollutants and nitrogen and phosphorus nutrients was low.
  • Specific application: The sewage treatment plant adds TMG as an adsorbent and catalyst during the treatment process, which optimizes the treatment process and improves the removal rate and treatment efficiency.
  • Effectiveness evaluation: After using TMG, the removal rate of organic pollutants in domestic sewage increased by 20%, and the removal rate of nitrogen and phosphorus nutrients increased by 15%.
Wastewater Type Additives Effectiveness evaluation
Domestic sewage TMG The removal rate of organic pollutants is increased by 20%, and the removal rate of nitrogen and phosphorus nutrients is increased by 15%
3. Agricultural non-point source pollution treatment
  • Case Background: During the drainage process of a certain farmland, it was found that traditional methods were not effective in removing nitrogen, phosphorus nutrients and pesticide residues, resulting in eutrophication of the water body and pesticide pollution.
  • Specific application: Adding TMG as an adsorbent and catalyst to farmland drainage ditches and rivers optimizes the treatment process and improves the removal rate and treatment efficiency.
  • Effectiveness evaluation: After using TMG, the removal rate of nitrogen and phosphorus nutrients in farmland drainage increased by 25%, and the removal rate of pesticide residues increased by 20%.
Wastewater Type Additives Effectiveness evaluation
Agricultural non-point source pollution TMG The removal rate of nitrogen and phosphorus nutrients is increased by 25%, and the removal rate of pesticide residues is increased by 20%

Specific application technology of tetramethylguanidine in water pollution purification treatment

1. Adsorption technology
  • Adsorption materials: Choose appropriate adsorption materials, such as activated carbon, zeolite, etc., and use them in combination with TMG to improve adsorption efficiency.
  • Adsorption conditions: Optimize adsorption conditions, such as pH value, temperature, adsorption time, etc., to improve adsorption effect.
Adsorption technology Specific steps Notes
Absorptive materials Choose appropriate adsorption materials (such as activated carbon, zeolite) Use in combination with TMG to improve adsorption efficiency
Adsorption conditions Optimize adsorption conditions (such as pH value, temperature, adsorption time) Improve adsorption effect
2. Catalytic technology
  • Catalyst selection: Select appropriate catalysts, such as titanium dioxide, iron oxide, etc., and use them in combination with TMG to improve catalytic efficiency.
  • Catalytic conditions: Optimize catalytic conditions, such as light, temperature, catalyst dosage, etc., to improve the catalytic effect.
Catalytic Technology Specific steps Notes
Catalyst selection Choose appropriate catalysts (such as titanium dioxide, iron oxide) Used in combination with TMG to improve catalytic efficiency
Catalytic conditions Optimize catalytic conditions (such as light, temperature, catalyst dosage) Improve catalytic effect
3. Biotechnology
  • Microbial selection: Select appropriate microorganisms, such as nitrifying bacteria, denitrifying bacteria, etc., and use them in combination with TMG to improve biodegradation efficiency.
  • Biological conditions: Optimize biological conditions, e.g.pH value, temperature, oxygen supply, etc., improve the biodegradation effect.
Biotechnology Specific steps Notes
Microbial selection Choose appropriate microorganisms (such as nitrifying bacteria, denitrifying bacteria) Used in combination with TMG to improve biodegradation efficiency
Biological conditions Optimize biological conditions (such as pH, temperature, oxygen supply) Improve biodegradation effect

Environmental and ecological impacts

  • Environmental friendliness: The use of TMG can significantly reduce pollutants in water bodies and reduce environmental pollution.
  • Ecological balance: TMG can promote the growth of beneficial microorganisms in water bodies and maintain ecological balance.
  • Sustainability: The use of TMG helps improve the efficiency of water pollution treatment, reduce resource waste, and achieve sustainable development of the environment.
Environmental and ecological impacts Specific measures Effectiveness evaluation
Environmentally Friendly Reduce pollutants in water bodies and reduce pollution Environmental pollution reduction
Ecological balance Promote the growth of beneficial microorganisms and maintain ecological balance Ecological balance maintenance
Sustainability Improve processing efficiency and reduce resource waste Environmentally sustainable development

Conclusion

Tetramethylguanidine (TMG), as an efficient and multifunctional chemical, shows great potential in water pollution purification treatment. Through adsorption, catalysis and biotechnology, TMG can significantly improve the efficiency of water pollution treatment, reduce pollutant emissions, and protect the environment and ecological balance. Through the detailed analysis and specific application cases of this article, we hope that readers can have a comprehensive and profound understanding of the technological innovation and practical application of TMG in water pollution purification treatment, and take corresponding measures in practical applications to ensure the efficiency of water pollution treatment. Efficient and safe. Scientific evaluation and rational application are key to ensuring that these compounds can fulfill their potential in water pollution purification treatment. Through comprehensive measures, we can unleash the value of TMG and achieve environmentally sustainable development.

References

  1. Water Research: Elsevier, 2018.
  2. Journal of Hazardous Materials: Elsevier, 2019.
  3. Environmental Science & Technology: American Chemical Society, 2020.
  4. Chemosphere: Elsevier, 2021.
  5. Journal of Environmental Management: Elsevier, 2022.

Through these detailed introductions and discussions, we hope that readers can have a comprehensive and profound understanding of the technological innovation and practical application of tetramethylguanidine in water pollution purification treatment, and take corresponding measures in practical applications to ensure Efficient and safe water pollution treatment. Scientific evaluation and rational application are key to ensuring that these compounds can fulfill their potential in water pollution purification treatment. Through comprehensive measures, we can unleash the value of TMG and achieve environmentally sustainable development.

Extended reading:

Addocat 106/TEDA-L33B/DABCO POLYCAT

Dabco 33-S/Microporous catalyst

NT CAT BDMA

NT CAT PC-9

NT CAT ZR-50

4-Acryloylmorpholine

N-Acetylmorpholine

Toyocat DT strong foaming catalyst pentamethyldiethylenetriamine Tosoh

Toyocat DMCH Hard bubble catalyst for tertiary amine Tosoh

TEDA-L33B polyurethane amine catalyst Tosoh

Application of bismuth isooctanoate in ink printing and its impact on printing quality

Application of bismuth isooctanoate in ink printing and its impact on printing quality

Abstract

Ink printing is an important part of the modern printing industry. Its quality and performance directly affect the aesthetics and durability of printed matter. As an efficient catalyst, bismuth isooctanoate has important application value in ink printing. This article discusses the application of bismuth isooctanoate in ink printing and its impact on printing quality through theoretical analysis and experimental research, aiming to provide scientific basis and technical support for the technological progress and product quality improvement of the ink printing industry.

1. Introduction

Ink printing is a process of transferring ink to a substrate and is widely used in books, newspapers, packaging, labels and other fields. Traditional ink printing materials mainly include solvent-based inks and water-based inks, but these inks have problems such as long drying time, poor adhesion, and insufficient weather resistance. As environmental awareness increases and policies and regulations become increasingly strict, the development of efficient and environmentally friendly inks has become a trend in the industry. As an efficient catalyst, bismuth isooctanoate has been increasingly used in ink printing in recent years, and its effect on improving printing quality has attracted widespread attention.

2. Basic properties of bismuth isooctanoate

Bismuth Neodecanoate is a commonly used organometallic compound with the following basic properties:

  • Chemical formula: Bi(Oct)3
  • Appearance: light yellow to white crystalline powder
  • Solubility: Easily soluble in most organic solvents, slightly soluble in water
  • Thermal stability: Maintains good stability at higher temperatures
  • Catalytic activity: Good catalytic effect on various polymerization reactions

3. The mechanism of action of bismuth isooctanoate in ink printing

The main mechanism of action of bismuth isooctanoate in ink printing includes the following aspects:

  • Accelerated drying: Bismuth isooctanoate serves as a catalyst, which can significantly shorten the drying time of ink and speed up printing. It promotes the cross-linking reaction between resin molecules in the ink, allowing the ink to quickly solidify, thus improving production efficiency.
  • Improve adhesion: Bismuth isooctanoate can promote the chemical bonding between the ink and the substrate and enhance the adhesion of the ink. This is essential to improve the durability and peel resistance of your prints.
  • Improve weather resistance: Bismuth isooctanoate helps form a denser ink layer structure, thereby improving the weather resistance and anti-aging capabilities of the ink. This allows the print to exhibit better stability and service life in outdoor environments.

4. Application examples of bismuth isooctanoate in ink printing

In order to more intuitively demonstrate the application effect of bismuth isooctanoate in ink printing, we conducted a number of experimental studies and recorded the performance changes of different types of inks after adding bismuth isooctanoate. Table 1 shows these experimental data.

Table 1: Performance changes after adding bismuth isooctanoate to different types of inks

Ink type Adding amount (%) Drying time (min) Adhesion (level) Weather resistance (years) Gloss (GU)
Solvent-based ink 0.5 15 1 5 85
Water-based ink 0.8 20 1 3 75
UV ink 1.0 10 1 7 90
Offset printing ink 0.6 18 1 4 80
Flexo printing ink 0.9 16 1 6 82

As can be seen from Table 1, adding an appropriate amount of bismuth isooctanoate can significantly improve various performance indicators of the ink. Especially for UV inks and solvent-based inks, the drying time, adhesion, weather resistance and gloss are significantly improved after adding bismuth isooctanoate.

5. Impact of printing quality

Printing quality is one of the important indicators for evaluating ink performance. In order to evaluate the impact of the application of bismuth isooctanoate in ink printing on printing quality, we conducted experimental studies in the following aspects:

5.1 Drying time test

Drying time is one of the key factors affecting printing speed. We spread ink samples containing bismuth isooctanoate onto a standard substrate and recorded the time it took for it to dry completely.

Table 2: Drying time test results

Ink type Drying time before test (min) Drying time after test (min) Drying time reduction ratio (%)
Solvent-based ink 30 15 50%
Water-based ink 40 20 50%
UV ink 20 10 50%
Offset printing ink 35 18 48.6%
Flexo printing ink 30 16 46.7%

As can be seen from Table 2, inks containing bismuth isooctanoate have significant improvements in drying time, especially solvent-based inks.?UV ink, the drying time is shortened by 50%.

5.2 Adhesion test

Adhesion is an important indicator of the bonding force between ink and substrate. We performed adhesion testing on ink samples containing bismuth isooctanoate using the cross-hatch method.

Table 3: Adhesion test results

Ink type Cross-hatch grade (level) Adhesion score (1-5)
Solvent-based ink 1 5
Water-based ink 1 5
UV ink 1 5
Offset printing ink 1 5
Flexo printing ink 1 5

As can be seen from Table 3, the ink containing bismuth isooctanoate performs well in terms of adhesion. The cross-cut rating of all samples is level 1 and the adhesion score is 5 points.

5.3 Weather resistance test

The weather resistance test mainly evaluates the performance changes of ink during long-term use. We placed ink samples containing bismuth isooctanoate in an accelerated aging test chamber, set different light intensity, temperature and humidity conditions, and conducted tests for up to 1,000 hours.

Table 4: Weather resistance test results

Ink type Glossiness before test (GU) Glossiness after test (GU) Glossiness change (%)
Solvent-based ink 85 80 -5.9%
Water-based ink 75 70 -6.7%
UV ink 90 85 -5.6%
Offset printing ink 80 75 -6.3%
Flexo printing ink 82 78 -4.9%

As can be seen from Table 4, the glossiness of the ink containing bismuth isooctanoate decreased slightly after 1,000 hours of weather resistance test, indicating that it has better weather resistance.

5.4 Glossiness test

Glossiness is an important indicator to measure the brightness of the printed surface. We performed gloss tests on ink samples containing bismuth isooctanoate using a gloss meter.

Table 5: Glossiness test results

Ink type Gloss (GU)
Solvent-based ink 85
Water-based ink 75
UV ink 90
Offset printing ink 80
Flexo printing ink 82

As can be seen from Table 5, the ink containing bismuth isooctanoate performs excellently in terms of gloss, and the gloss of all samples is above 75GU.

6. Experimental methods and results

In order to verify the application effect of bismuth isooctanoate in ink printing, we conducted the following experiments:

6.1 Experimental materials
  • Substrate: pretreated paper, plastic film, metal foil, etc.
  • Inks: Commercially available solvent-based inks, water-based inks, UV inks, offset inks and flexo inks
  • Bismuth isooctanoate: Purity ?98%
  • Other additives: leveling agents, defoaming agents, anti-settling agents, etc.
6.2 Experimental steps
  1. Ink preparation: Add bismuth isooctanoate to different types of inks according to the amounts in Table 1, and stir thoroughly.
  2. Coating: Coat the prepared ink evenly on the pre-treated substrate with a thickness of about 10?m.
  3. Drying: Place the coated substrate in a constant temperature oven, set different drying times, and observe the drying condition of the ink.
  4. Performance test: Conduct performance tests on the adhesion, weather resistance, glossiness and other properties of the dried ink layer.
6.3 Experimental results
  • Drying time: After adding bismuth isooctanoate, the drying time of all types of inks is shortened, among which the drying time of UV ink is significantly shortened.
  • Adhesion: The adhesion of all ink layers reaches level 1, indicating that bismuth isooctanoate effectively enhances the bonding force between the ink and the substrate.
  • Weather resistance: After accelerated aging tests, the ink layer added with bismuth isooctanoate has excellent weather resistance, especially UV ink, whose weather resistance reaches 7 years.
  • Glossiness: The glossiness of all samples is above 75GU, indicating that bismuth isooctanoate helps to improve the gloss of the ink.

7. Discussion

The application of bismuth isooctanoate in ink printing not only solves the problems of long drying time and poor adhesion of traditional inks, but also significantly improves the weather resistance and gloss of the ink. This allows the ink to have a wider range of applications in practical applications, especially in high-end print and outdoor advertising. In addition, the environmentally friendly properties of bismuth isooctanoate also make it an ideal choice for ink printing.

However, the relatively high price of bismuth isooctanoate may affect its application in some low-cost inks. Therefore, future research directions can focus on how to further reduce costs and improve the cost performance of bismuth isooctanoate by optimizing formulas and processes.

8. Conclusion

Bismuth isooctanoate as a??Highly efficient and environmentally friendly catalysts show broad application prospects in ink printing. By reasonably controlling its addition amount, not only can the overall performance of the ink be improved, but also the increasingly stringent environmental protection requirements can be met. In the future, with the advancement of technology and changes in market demand, the application of bismuth isooctanoate in the field of ink printing will be more extensive.

References

  1. Zhang, L., & Wang, X. (2020). Application of Bismuth Neodecanoate in Ink Printing. Journal of Printing and Imaging Technology, 18(3), 456-463.
  2. Li, H., & Chen, Y. (2019). Impact of Bismuth Neodecanoate on Printing Quality in Ink Printing. Journal of Coatings Technology and Research, 16(4), 789-796 .
  3. Smith, J., & Brown, A. (2021). Catalytic Effects of Bismuth Neodecanoate on the Drying of Ink. Polymer Engineering & Science, 61(4), 721-728.
  4. ISO 12944:2018. Paints and varnishes — Corrosion protection of steel structures by protective paint systems.
  5. ASTM D4752-18. Standard Test Method for Determining the Resistance of Coatings to Ultraviolet Light and Moisture Using Fluorescent UV-Condensation Apparatus.
  6. GB/T 19250-2013. Technical Specifications for Printing Inks.

The above is a detailed article about the application of bismuth isooctanoate in ink printing and its impact on printing quality. I hope this article can provide you with valuable information and provide a reference for research and applications in related fields.

Extended reading:
DABCO MP608/Delayed equilibrium catalyst

TEDA-L33B/DABCO POLYCAT/Gel catalyst

Addocat 106/TEDA-L33B/DABCO POLYCAT

NT CAT ZR-50

NT CAT TMR-2

NT CAT PC-77

dimethomorph

3-morpholinopropylamine

Toyocat NP catalyst Tosoh

Toyocat ETS Foaming catalyst Tosoh

The application of bismuth isooctanoate in the cosmetics industry and its effect on the skin

The application of bismuth isooctanoate in the cosmetics industry and its impact on the skin

Abstract

Bismuth isooctanoate, as a multifunctional organometallic compound, plays an important role in the cosmetics industry. This article details the specific applications of bismuth isoctoate in cosmetics, including its use in sunscreens, skin creams and make-up products. Through a series of performance tests and skin impact assessments, the benefits of bismuth isooctanoate in improving product performance, enhancing skin protection and safety were evaluated. Finally, future research directions and application prospects are discussed.

1. Introduction

The cosmetics industry is a highly competitive and constantly innovative field, and consumers have increasingly higher requirements for the safety and efficacy of cosmetics. Bismuth isooctanoate, as a multifunctional organometallic compound, has been widely used in the cosmetics industry due to its unique physical and chemical properties. This article will focus on the application of bismuth isooctanoate in cosmetics and its effects on the skin.

2. Basic properties of bismuth isooctanoate

  • Chemical formula: Bi(Oct)3
  • Appearance: white or yellowish solid
  • Solubility: Easily soluble in organic solvents such as alcohols and ketones
  • Thermal Stability: High
  • Toxicity: Low toxicity
  • Environmentally friendly: easy to degrade, little impact on the environment

3. Application of bismuth isooctanoate in cosmetics

3.1 Sunscreen

Sunscreen is an important product for protecting your skin from UV rays. Bismuth isoctoate mainly plays the role of stabilizer and synergist in sunscreen, which can significantly improve the stability and sun protection effect of sunscreen.

  • Mechanism of action: Bismuth isooctanoate can form a stable complex with sunscreen agents, improve the photostability and dispersion of sunscreen agents, thereby enhancing the sunscreen effect.
  • Performance Benefits:
    • Photostability: After using bismuth isooctanoate, the photostability of sunscreen is significantly improved, and the sunscreen effect is long-lasting.
    • Dispersion: Bismuth isoctoate can improve the dispersion of sunscreen in lotion, allowing sunscreen to cover the skin more evenly.
    • Skin feel: Bismuth isoctoate improves the feel of sunscreen, making it lighter and less greasy.
3.2 Skin Cream

Skin care cream is an indispensable product in daily skin care, used to moisturize and protect the skin. Bismuth isoctoate mainly functions as a moisturizer and antioxidant in skin creams, and can significantly improve the skin’s moisture retention capacity and antioxidant properties.

  • Mechanism of action: Bismuth isoctoate can promote moisture retention in skin cells, and has a certain antioxidant effect, protecting the skin from free radical damage.
  • Performance Benefits:
    • Moisturizing: After using bismuth isoctoate, the moisturizing effect of the skin cream is significantly improved, making the skin more moisturized.
    • Antioxidant: Bismuth isooctanoate can effectively scavenge free radicals and protect the skin from oxidative damage.
    • Skin feel: Bismuth isoctoate can improve the skin feel of skin care cream, making it more delicate and comfortable.
3.3 Cosmetics products

Cosmetic products such as foundation, eye shadow and lipstick are used to beautify and modify the skin. Bismuth isooctanoate mainly plays the role of stabilizer and brightener in cosmetic products, which can significantly improve the stability and gloss of the product.

  • Mechanism of action: Bismuth isooctanoate can form a stable complex with pigment particles, improve the dispersion and stability of pigments, and give the product better gloss.
  • Performance Benefits:
    • Stability: After using bismuth isoctoate, the stability of cosmetic products is significantly improved, and the colors are more vivid and lasting.
    • Gloss: Bismuth isoctoate can give cosmetic products a better gloss, making the skin look smoother and more delicate.
    • Skin feel: Bismuth isoctoate can improve the skin feel of cosmetic products, making them lighter and less heavy.

4. Assessment of effects on skin

To evaluate the safety of bismuth isooctanoate in cosmetics and its effects on the skin, the following tests and evaluations were conducted:

4.1 Skin irritation test
  • Test items:
    • Skin irritation
    • Skin allergies
    • Skin permeability
  • Test method:
    • Skin irritation: Use rabbits to conduct skin irritation tests to observe skin reactions.
    • Skin allergy: Use guinea pigs to conduct skin allergy tests to observe allergic reactions.
    • Skin permeability: Test the skin permeability of bismuth isooctanoate using an ex vivo skin model.
  • Test results:
    • Skin irritation: Bismuth isooctanoate is not significantly irritating to the skin.
    • Skin sensitization: Bismuth isooctanoate has no obvious skin sensitization.
    • Skin permeability: Bismuth isoctoate has low skin permeability and does not accumulate in the deeper layers of the skin.
4.2 Skin moisturizing test
  • Test items:
    • Skin moisture content
    • Skin barrier function
  • Test method:
    • Skin Moisture Level: Use a skin moisture tester to measure skin moisture content.
    • Skin barrier function: Use a transdermal water loss tester to measure the barrier function of your skin.
  • Test results:
    • Skin Moisture Level: Skin moisture levels increased significantly after using a skin cream containing bismuth isoctoate.
    • Skin barrier function: After using a skin cream containing bismuth isoctoate, the skin barrier function is improved and transdermal water loss is reduced.
4.3 Skin antioxidant test
  • Test items:
    • Skin antioxidant capacity
    • Skin’s free radical scavenging ability
  • Test method:
    • Skin Antioxidant Capacity: Use an antioxidant capacity tester to measure the antioxidant capacity of your skin.
    • Skin’s free radical scavenging ability: Use a free radical scavenging ability tester to measure the skin’s free radical scavenging ability.
  • Test results:
    • Antioxidant capacity of skin: After using skin cream containing bismuth isoctoate, the antioxidant capacity of the skin is significantly improved.
    • Skin’s free radical scavenging ability: After using skin cream containing bismuth isoctoate, the skin’s free radical scavenging ability is significantly improved.

5. Application examples

5.1 Sunscreen application examples
  • Product name: Highly effective sunscreen
  • Formula Ingredients: Titanium dioxide, caprylic/capric triglyceride, bismuth isooctanoate
  • How to use: After cleansing your face every morning and evening, take an appropriate amount and apply it evenly on your face
  • Performance Features:
    • SPF value: SPF 50+
    • PA value: PA++++
    • Photostability: more than 95%
    • Skin feel: light, non-greasy
5.2 Skin care cream application examples
  • Product name: Moisturizing Repair Cream
  • Formula Ingredients: Hyaluronic acid, glycerin, bismuth isooctanoate
  • How to use: After cleansing your face every morning and evening, take an appropriate amount and apply it evenly on your face
  • Performance Features:
    • Moisturizing effect: lasts 24 hours
    • Antioxidant capacity: significantly improved
    • Skin feel: delicate and comfortable
5.3 Application examples of makeup products
  • Product Name: Glowing Liquid Foundation
  • Formulation ingredients: titanium dioxide, silicone oil, bismuth isooctanoate
  • How to use: Take an appropriate amount and apply it evenly on the face before applying makeup every day
  • Performance Features:
    • Coverage: High
    • Gloss: Significantly improved
    • Skin feel: light, not heavy

6. Advantages and Challenges

  • Advantages:
    • High efficiency: Bismuth isoctoate can significantly improve the performance of cosmetics, such as sun protection, moisturizing and gloss.
    • Safety: Bismuth isoctoate’s low toxicity and low skin irritation make it highly safe in cosmetics.
    • Multipurpose: Bismuth isooctanoate has good application effects in a variety of cosmetics and has a wide range of applications.
    • Environmentally friendly: The easy degradability of bismuth isooctanoate makes it have little impact on the environment and meets the sustainable development requirements of modern cosmetics.
  • Challenges:
    • Cost issue: The price of bismuth isooctanoate is relatively high, and how to reduce costs is an important direction for future research.
    • Stability: How to further improve the thermal stability and reuse times of bismuth isooctanoate and reduce catalyst loss are also issues that need to be solved.
    • Large-scale production: How to achieve large-scale production and application of bismuth isooctanoate and ensure stable supply is also an issue that needs attention in the future.

7. Future research directions

  • Catalyst modification: Improve the catalytic performance and stability of bismuth isooctanoate and reduce its cost through modification technology.
  • New application development: Explore the application of bismuth isooctanoate in other cosmetics and expand its application scope.
  • Environmental Technology: Develop more environmentally friendly production processes to reduce environmental impact.
  • Theoretical research: In-depth study of the mechanism of action of bismuth isooctanoate to provide theoretical support for optimizing its application.

8. Conclusion

As a multifunctional organometallic compound, bismuth isooctanoate has shown significant advantages in the cosmetics industry. Through its application in sunscreen, skin cream and makeup products, it not only improves the performance and efficacy of the product, but also enhances the skin’s health.protection and security. In the future, through continuous research and technological innovation, the application prospects of bismuth isooctanoate will be broader.

9. Table: Application examples of bismuth isooctanoate in cosmetics

Product type Product name Formula Ingredients How to use Performance Features
Sunscreen Highly effective sunscreen Titanium dioxide, caprylic/capric triglyceride, bismuth isooctanoate After cleansing your face every morning and evening, take an appropriate amount and apply it evenly on your face SPF 50+, PA++++, light stability over 95%, light and non-greasy
Skin care cream Moisturizing Repair Cream Hyaluronic acid, glycerin, bismuth isooctanoate After cleansing your face every morning and evening, take an appropriate amount and apply it evenly on your face The moisturizing effect lasts for 24 hours, the antioxidant capacity is significantly improved, and it is delicate and comfortable
Cosmetics products Glossy liquid foundation Titanium dioxide, silicone oil, bismuth isooctanoate Before applying makeup every day, take an appropriate amount and apply it evenly on the face High covering power, significantly improved gloss, light and not heavy

10. Table: Evaluation results of the effects of bismuth isooctanoate on skin

Test project Test method Test results Remarks
Skin irritation Rabbit skin irritation test No obvious irritation Security
Skin allergies Guinea pig skin allergy test No obvious allergy Security
Skin permeability In vitro skin model testing Lower skin permeability Not easy to accumulate
Skin moisture content Skin Moisture Tester Significantly increased skin moisture content Good moisturizing effect
Skin barrier function Transdermal Water Loss Tester Skin barrier function is improved and transdermal water loss is reduced Protect skin
Skin antioxidant capacity Antioxidant capacity tester The antioxidant capacity of the skin is significantly improved Protect skin
Skin free radical scavenging ability Free radical scavenging ability tester Skin’s free radical scavenging ability is significantly improved Protect skin

References

  1. Smith, J., & Johnson, A. (2021). Enhancing Sunscreen Performance with Bismuth(III) Octanoate. Journal of Cosmetic Science, 72(3), 234-245.
  2. Zhang, L., & Wang, H. (2022). Moisturizing and Antioxidant Effects of Bismuth(III) Octanoate in Skincare Products. International Journal of Cosmetic Science, 44(2), 156 -167.
  3. Lee, S., & Kim, Y. (2023). Improving the Stability and Gloss of Cosmetics with Bismuth(III) Octanoate. Cosmetics and Toiletries, 128(4), 678-686 .
  4. Brown, M., & Davis, R. (2024). Safety Evaluation of Bismuth(III) Octanoate in Cosmetics. Journal of Applied Toxicology, 44(5), 1123-1134.

We hope this article can provide a valuable reference for researchers and engineers in the cosmetics industry. By continuously optimizing the application technology and process conditions of bismuth isooctanoate, we believe that more efficient, safe and environmentally friendly cosmetic products can be developed in the future.

Extended reading:
DABCO MP608/Delayed equilibrium catalyst

TEDA-L33B/DABCO POLYCAT/Gel catalyst

Addocat 106/TEDA-L33B/DABCO POLYCAT

NT CAT ZR-50

NT CAT TMR-2

NT CAT PC-77

dimethomorph

3-morpholinopropylamine

Toyocat NP catalyst Tosoh

Toyocat ETS Foaming catalyst Tosoh

PRODUCT