2-furanmethanethiol

2-furanmethylthiol structural formula

Structural formula

Business number 02D3
Molecular formula C5H6OS
Molecular weight 114.07
label

furfuryl mercaptan,

2-Thiofuranmethanol,

coffee aldehyde,

Furfuryl mercaptan,

2-thio furan methanol,

Coffee aldehydes,

artificial flavors

Numbering system

CAS number:98-02-2

MDL number:MFCD00003254

EINECS number:202-628-2

RTECS number:LU2100000

BRN number:383594

PubChem number:24871755

Physical property data

1. Properties: colorless and transparent liquid with a very unpleasant odor.

2. Density (g/mL, 25?): 1.139

3. Relative vapor density (g/mL, air=1): Undetermined

4. Melting point (ºC): Undetermined

5. Boiling point (ºC, normal pressure): 155

6. Boiling point (ºC, kPa): Undetermined

7. Refractive index (n20/D): 1.5329

8. Flash point (ºC): 45

9. Specific rotation (º): Undetermined

p>

10. Autoignition point or ignition temperature (ºC): Not determined

11. Vapor pressure (mmHg, 55ºC): Not determined

12. Saturated vapor pressure (kPa, 25 ºC): 0 not determined

13. Heat of combustion (KJ/mol): not determined

14. Critical temperature (ºC): not determined

15. Critical pressure (KPa): Undetermined

16. Log value of oil-water (octanol/water) partition coefficient: Undetermined

17. Explosion upper limit (% , V/V): Undetermined

18. Lower explosion limit (%, V/V): Undetermined

19. Solubility: Insoluble in water, soluble in a variety of organic matter It is stable in solvents and dilute alkali solutions, and easily polymerizes in the presence of inorganic acids.

Toxicological data

1. Acute toxicity: mouse peritoneal cavity LD50: 100mg/kg; 2. Other multiple dose toxicity: rat oral TDLo: 2730 mg/kg/13W-C; 3. Reproductive toxicity: male rats 42 days before mating Oral TDLo: 1260 mg/kgSEX/DURATION;

Ecological data

Water hazard class 1 (German Regulation) (self-assessment via list) The substance is slightly hazardous to water.

Do not allow undiluted or large amounts of product to come into contact with groundwater, waterways or sewage systems.

Do not discharge materials into the surrounding environment without government permission.

Molecular structure data

1. Molar refractive index: 31.36

2. Molar volume (cm3/mol): 102.5

3.   Isotonic specific volume (90.2K): 249.9

4. Surface tension (dyne/cm): 35.2

5. Dielectric constant:

6. Even Polar distance (10-24cm3):

7. Polarizability: 12.43

Compute chemical data

1. Hydrophobic parameter calculation reference value (XlogP): 1.3

2. Number of hydrogen bond donors: 0

3. Number of hydrogen bond acceptors: 1

4. Number of rotatable chemical bonds: 1

5. Number of tautomers:

6. Topological molecular polar surface area (TPSA): 13.1

7. Number of heavy atoms: 7

8. Surface charge: 0

9. Complexity: 56

10. Number of isotope atoms: 0

11. Determine the number of atomic stereocenters: 0

12. Uncertain number of atomic stereocenters: 0

13. Determine the number of chemical bond stereocenters Number: 0

14. Number of uncertain chemical bond stereocenters: 0

15. Number of covalent bond units: 1

Properties and stability

Avoid contact with oxidants, reducing agents, alkalis, and alkali metals.

After dilution, it has the aroma of coffee and caramel, and when it is strong, it has an unpleasant sulfur-like smell. It is insoluble in water, soluble in a variety of organic solvents and dilute alkali solutions, and has stable properties. It is easy to polymerize in the presence of inorganic acids.

Storage method

Store in a cool, ventilated warehouse. Keep away from fire and heat sources. They should be stored separately from oxidants, reducing agents, alkalis, and food chemicals, and avoid mixed storage. It should not be stored for a long time to avoid deterioration. Use explosion-proof lighting and ventilation facilities. It is prohibited to use mechanical equipment and tools that are prone to sparks. The storage area should be equipped with emergency release equipment and suitable containment materials.

Synthesis method

Heat furfuryl alcohol, thiourea and 48% hydrobromic acid to reflux, add sodium hydroxide aqueous solution, acidify the aqueous layer after separation, extract and combine the ether layers with ether, dry and distill to obtain the desired product.

Purpose

Raw materials for preparing coffee and baking aroma. The dosage for candies and baked goods is 2×10-6. Dosage of soft drinks, iced foods, and frostings (5×10-7) ~ (7.8×10-7). The dosage of jelly and pudding is 10-7. Product quality: content ?99%.

It is used to prepare coffee, chocolate and other flavors and is an important edible spice. In the spice industry, this product can also be used to synthesize other spices containing furfuryl sulfur groups.

extended-reading:https://www.bdmaee.net/wp-content/uploads/2016/05/Lupragen-N205-MSDS.pdf
extended-reading:https://www.newtopchem.com/archives/947
extended-reading:https://www.cyclohexylamine.net/low-odor-catalyst-9727-reaction-type-catalyst-9727/
extended-reading:https://www.bdmaee.net/dabco-t-96-catalyst-cas103-83-3-evonik-germany/
extended-reading:https://www.newtopchem.com/archives/category/products/page/174
extended-reading:https://www.cyclohexylamine.net/dibutyltin-monooctyl-maleate-cas-25168-21-2/
extended-reading:https://www.newtopchem.com/archives/915
extended-reading:https://www.newtopchem.com/archives/category/products/page/75
extended-reading:https://www.bdmaee.net/zinc-isooctanoate-cas-136-53-8-zinc-2-ethyloctanoate/
extended-reading:https://www.newtopchem.com/archives/category/products/page/2

Trimethylchlorosilane

Trimethylchlorosilane structural formula

Structural formula

Business number 01K2
Molecular formula C3H9ClSi
Molecular weight 108.64
label

Trimethylsilane chloride,

Trimethylmonochlorosilane,

Monochlorotrimethylsilane,

Trimethylsilyl chloride,

Chlorotrimethylsilane,

TMSCl,

Dow Corning® Z-1224,

TMCS,

Trimethylchlorosilane,

Trimethylsilyl chloride,

Cholrotrimethylsilane,

Elemental organic compounds

Numbering system

CAS number:75-77-4

MDL number:MFCD00000502

EINECS number:200-900-5

RTECS number:VV2710000

BRN number:1209232

PubChem number:24892952

Physical property data

1. Properties: colorless to light yellow transparent liquid with pungent odor. [18]

2. Melting point (?): -57.7[19]

3. Boiling point (?): 57[20]

4. Relative density (water = 1): 0.85[21]

5. Relative vapor Density (air=1): 3.8[22]

6. Saturated vapor pressure (kPa): 26.7 (20?)[23]

7. Critical pressure (MPa): 3.36[24]

8. Octanol/water partition coefficient: 2.48[25] sup>

9. Flash point (?): -18 (OC) [26]

10. Ignition temperature (?): 395[27]

11. Explosion upper limit (%): 6[28]

12. Explosion lower limit (%): 1.8[29]

13. Solubility: soluble in benzene, methanol, ether, and perchlorethylene. [30]

Toxicological data

1. Skin/eye irritation

Standard Draize test: rabbit, skin contact: 500?L; severity of reaction: moderate.

Standard Draize test: Rabbit, eye contact: 5 ?L; severity of reaction: moderate.

2. Acute toxicity: Oral LD50 in rats: 5660?L/kg; Inhaled LCLo in mice: 100mg/m3; Intraperitoneal LCLo in mice: 750mg/kg; Rabbit skin contact LD50: 1780?L/kg;

3. Chronic toxicity/carcinogenicity mice Intraperitoneal TCLo: 1000mg/kg/I;

4. Mutagenic microbial mice Salmonella typhi mutation: 1mg/plate;

5. Acute toxicity [31] LD50: 5660?l (4811mg)/kg (rat oral) ; 1780?l (1513mg)/kg (rabbit transdermal)

6. Irritation [32]

Rabbit transdermal Peel: 500?l, moderate irritation.

Rabbit eye: 5?l, moderate irritation.

7. Mutagenicity [33] Microbial mutagenicity: Salmonella typhimurium 1mg/dish.

Ecological data

Slightly hazardous to water, avoid contact of undiluted or large quantities of product with groundwater, waterways or sewage systems.

Molecular structure data

1. Molar refractive index: 29.51

2. Molar volume (cm3/mol): 125.1

3. Isotonic specific volume (90.2K ): 249.1

4. Surface tension (dyne/cm): 15.6

5. Polarizability (10-24cm3): 11.70 p>

Compute chemical data

1. Reference value for hydrophobic parameter calculation (XlogP): None

2. Number of hydrogen bond donors: 0

3. Number of hydrogen bond acceptors: 0

4. Number of rotatable chemical bonds: 0

5. Number of tautomers: none

6. Topological molecule polar surface area 0

7. Number of heavy atoms: 5

8. Surface charge: 0

9. Complexity: 28.4

10. Number of isotope atoms: 0

11. Determine the number of atomic stereocenters: 0

12. Uncertain number of atomic stereocenters: 0

13. Determine the number of chemical bond stereocenters: 0

14. Number of uncertain chemical bond stereocenters: 0

15. Number of covalent bond units: 1

Properties and stability

1. Stability[34] Stable

2. Incompatible substances[35] Strong acid, strong alkali, water

3. Conditions to avoid contact[36] Humid air

4. Polymerization hazard[37] No polymerization

5. Decomposition products[38] Hydrogen chloride

Storage method

Storage Precautions[39] Store in a cool, dry and well-ventilated warehouse. Keep away from fire and heat sources. The storage temperature should not exceed 37°C and the container should be kept sealed. They should be stored separately from acids, alkalis, etc., and avoid mixed storage. Use explosion-proof lighting and ventilation facilities. It is prohibited to use mechanical equipment and tools that are prone to sparks. The storage area should be equipped with emergency release equipment and suitable containment materials.

Synthesis method

1. Methyl chloride and silicon powder are directly synthesized in the next step catalyzed by cuprous chloride to generate a methylchlorosilane mixture, which can be purified by distillation to obtain trimethylchlorosilane and other monomers. Laboratory preparation can be made by reacting tetramethylsilane with acetyl chloride in the presence of aluminum trichloride.

2. Stir crude (or industrial product) trimethylchlorosilane with aluminum trichloride, aluminum tribromide or ferric hydroxide at 60°C for 10 minutes, and then distill to obtain pure product.

3. Methyl chloride and silicon powder are synthesized in one step at high temperatures above 300 to 550°C in the presence of cuprous chloride catalyst. The resulting methylchlorosilane mixture is purified by distillation to obtain trimethylchlorosilane.

4. Connect the 17.5g quad Methylsilane was quickly added to 26.5g of purified aluminum trichloride cooled in an ice-salt bath. While stirring, 16ml of acetyl chloride was added dropwise.
The dripping speed of acetyl chloride is preferably to maintain appropriate reflux. The dripping process is completed in 40 minutes. After the dripping is completed, the reaction is stirred for 1 hour and 20.8g of trimethylchlorosilane can be obtained by distillation. The response is:

Purpose

1. Used as an intermediate, hydrophobic agent, and analytical reagent in the manufacture of silicone oil.

2. Used as a gas chromatography derivatization reagent for the silanization of unhindered hydroxyl, amino and carboxyl groups. Also used in organic synthesis.

3. Silanization reagents for hydroxyl, amino and carbonyl groups. Used to prepare its volatile derivatives for gas chromatography analysis. Ketol condensation of esters, condensation cyclization of ? and ? monodioic acid esters, and acylation of malonate esters. Isosimilar acid esters are prepared from urethane. Preparation of enol silane ethers from carbonyl compounds. Preparation of enamines from ketones. Reductive silylation of aromatic rings, etc.

4. Trimethylchlorosilane is mostly used to synthesize silicon ether compounds and vinyl silane. It can also be used as a protective group for hydroxyl-containing compounds such as alcohols. In addition, it is also used in the synthesis of tert-butoxycarbonyl ( BOC) and other deprotection reactions.

As a protective group An important application of trimethylchlorosilane is as alcohols[1] and phenols[2] , terminal alkyne [3,4], etc., react to form compounds containing trimethylsilyl groups. In the reaction with alcohol compounds, TMSCl generates silicon ether compounds under the action of bases such as triethylamine, DMAP, etc. This method can be used to protect the alcoholic hydroxyl groups in primary, secondary, and tertiary alcohols (Formula 1)[ 1].

Under similar conditions, TMSCl also It can react with ketone compounds to generate enol ether compounds (formula 2)[5~7]. Trimethylsilyl is easily removed under the action of acid.

For terminal alkynes, in Under the action of lithium, zinc reagents, etc., terminal alkynes can directly interact with TMSCl to generate silane compounds (formula 3)[3,4].

Under the action of strong alkali, TMSCl It is also possible to introduce a trimethylsilyl group (formula 4)[8] on the aromatic ring.

Addition reaction With the participation of transition metal catalysts or triphenylphosphine, etc., epoxy compounds can directly react with TMSCl The reaction is ring-opening, and the product is an O-end-protected silicon ether compound. After removing the silicon group, an alcohol compound (formula 5) [9,10] can be obtained.

TMSCl can also be used with ?,?-unsaturated carbonyl compounds undergo 1,4-conjugate addition reaction (Formula 6)[11~14]. p>

Elimination reaction In the presence of TMSCl and a catalyst, epoxides or allyl alcohol derivatives can undergo deoxygenation reactions to generate carbon-carbon double bond compounds (formula 7)[15,16]

Formation of silyl vinyl accumulated dienes Under the action of transition metal catalysts, alkenes and alkynes can couple with TMSCl to generate accumulated dienes, which can be further oxidized to ?, ? -Unsaturated ketone (Formula 8)[17]

5. Used as an intermediate, hydrophobic agent, and analytical reagent in the manufacture of silicone oil. [40]

extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/59.jpg
extended-reading:https://www.bdmaee.net/dabco-2039-catalyst-cas3033-62-3-evonik-germany/
extended-reading:https://www.newtopchem.com/archives/44177
extended-reading:https://www.newtopchem.com/archives/45022
extended-reading:https://www.bdmaee.net/n-methylimidazole/
extended-reading:https://www.bdmaee.net/fascat8201-catalyst/
extended-reading:https://www.bdmaee.net/toyocat-trc-catalyst-tosoh/
extended-reading:https://www.newtopchem.com/archives/44661
extended-reading:https://www.morpholine.org/4-acryloylmorpholine/
extended-reading:https://www.bdmaee.net/dimethyltin-dichloride/

2-furfural

2-Furfural Structural Formula

Structural formula

Business number 02D2
Molecular formula C5H4O2
Molecular weight 96.09
label

2-Furancarbaldehyde,

?-furancarbaldehyde,

Gluten creates ant oil,

Pyroviscosity aldehyde,

Furan formaldehyde,

2-Formylofuran,

2-Furancarboxaldhyde,

Furfurol,

Pyromucic aldehyde,

Furfural,

Extracting agent,

Multifunctional solvents,

heterocyclic compounds,

organic insulating materials,

synthetic raw materials,

Intermediates

Numbering system

CAS number:98-01-1

MDL number:MFCD00003229

EINECS number:202-627-7

RTECS number:LT7000000

BRN number:105755

PubChem ID:None

Physical property data

1. Properties: colorless to yellow oily liquid with almond-like odor. [1]

2. Melting point (?): -36.5[2]

3. Boiling point (?): 161.8[3]

4. Relative density (water = 1): 1.16[4]

5. Relative vapor Density (air=1): 3.31[5]

6. Saturated vapor pressure (kPa): 0.27 (20?)[6]

7. Heat of combustion (kJ/mol): -2338.7[7]

8. Critical pressure (MPa): 5.5[8]

9. Octanol/water partition coefficient: 0.41~0.69[9]

10. Flash point (?): 60 ( CC)[10]

11. Ignition temperature (?): 315[11]

12. Explosion limit (%): 19.3[12]

13. Lower explosion limit (%): 2.1[13]

14. Solubility: Slightly soluble in cold water, soluble in hot water, ethanol, ether, and benzene. [14]

15. Refractive index (20ºC): 1.52608

16. Refractive index (25ºC): 1.52345

17 .Ignition point (ºC): 490

18. Heat of evaporation (KJ/mol): 43.25

19. Heat of fusion (KJ/mol): 14.36

20. Specific heat capacity (KJ/(kg·K), 25ºC, constant pressure): 1.64

21. Solubility parameter (J·cm-3)0.5?23.644

22. van der Waals area (cm2·mol-1): 6.120×109

23. van der Waals volume (cm3·mol-1): 47.260

24. Gas phase standard Heat of combustion (enthalpy) (kJ·mol-1): -2388.2

25. Gas phase standard claims heat (enthalpy) (kJ·mol-1): -151.0

26. Gas phase standard entropy (J·mol-1·K-1): 333.29

27. Gas phase standard free energy of formation (kJ·mol-1): -102.9

28. Liquid phase standard combustion heat (enthalpy) (kJ·mol– 1): -2337.6

29. Liquid phase standard claimed heat (enthalpy) (kJ·mol-1): -201.6

30. Liquid phase standard entropy (J·mol-1·K-1): 217.99

31. Liquid phase standard formation free energy (kJ·mol– 1): -119.1

32. Liquid phase standard hot melt (J·mol-1·K-1): 169.0

Toxicological data

1. Acute toxicity: mouse oral LC50: 425 mg/kg; rat inhalation LD50: 601mg/m3, 4 hours; mouse abdominal LC50: 1490 mg/kg; dog oral LD50: 2300mg/kg; Guinea pig oral 541.7mg/kg;

2. Acute toxicity[15]

LD50: 65mg/kg (rat oral)

LC50: 175ppm (rat inhalation, 6h)

3. Irritation[16 ]

Rabbit transdermal: 500mg (24h), moderate irritation.

Rabbit eye: 20mg (24h), severe irritation.

4. Subacute and chronic toxicity[17] Dog inhalation 507mg/m3, 6 hours a day, 5 days a week, for a total of 4 weeks, resulting in hepatic steatosis.

5. Mutagenicity[18] Microbial mutagenicity: Salmonella typhimurium 8094?g/dish. Cytogenetic analysis: hamster ovary 2500 ?mol/L. DNA inhibition: human HeLa cells 3mmol/L. Sister chromatid exchange: human lymphocytes 70 ?mol/L. Unprogrammed DNA synthesis: human liver 2nmol/L (24h).

6. Carcinogenicity[19] IARC Carcinogenicity Comment: G3, insufficient evidence of carcinogenicity to humans and animals .

Ecological data

1. Ecotoxicity[20]

LC50: 24~32mg/L (96h) (fish )

IC50: 2.7~31mg/L (72h) (algae)

2. Biodegradability[21] MITI-I test, initial concentration 100ppm, sludge concentration 30ppm, 93.5% degradation after 2 weeks.

3. Non-biodegradability No information available

Molecular structure data

1. Molar refractive index: 25.30

2. Molar volume (cm3/mol): 83.8

3. Isotonic specific volume (90.2K ): 206.3

4. Surface tension (dyne/cm): 36.5

5. Polarizability: 10.03

Compute chemical data

1. Reference value for hydrophobic parameter calculation (XlogP): 0.4

2. Number of hydrogen bond donors: 0

3. Number of hydrogen bond acceptors: 2

4. Number of rotatable chemical bonds: 1

5. Number of tautomers:

6. Topological molecular polar surface area (TPSA): 30.2

7. Number of heavy atoms: 7

8. Surface charge: 0

9. Complexity: 70.5

10. Number of isotope atoms: 0

11. Determine the number of atomic stereocenters: 0

12. Uncertain number of atomic stereocenters: 0

13. Determine the number of chemical bond stereocenters Number: 0

14. Number of uncertain chemical bond stereocenters: 0

15. Number of covalent bond units: 1

Properties and stability

1. It is non-corrosive to metals and can be stored in iron, mild steel, copper or aluminum containers. It gradually turns brown in the air or when exposed to light, so it should be protected from light and sealed with inert gas for storage. After furfural is placed in oxygen, air, carbon dioxide, and nitrogen for 40 days, the amounts of oxides (resin-like) generated are 1.7%, 0.3%, 0.1%, and 0.05% respectively. Adding p-hydroxydiphenylamine, diphenylamine, cadmium iodide, hydroquinone, pyrogallol or ?-naphthol, etc. to furfural in an amount of 0.1% can effectively prevent oxidation. Adding 0.001% to 0.1% of N-phenyl substituted urea, thiourea or naphthylamine to furfural can prevent the formation of resin when heated at 60 to 170°C.

2. Chemical properties: Furfural has the properties of aldehydes. For example, it can form an addition compound with sodium bisulfite, which can be oxidized to furancarboxylic acid and reduced to furfuryl alcohol. Cannizzaro reaction occurs in concentrated potassium hydroxide solution to generate furfuryl alcohol and furancarboxylic acid. Reacts with potassium cyanide to form furfural (furoin). It reacts with ammonia to form furfuramide and reacts with amines to form Schiff base. Furfural and soda lime are heated together to 350~400°C, or nickel or zinc oxide and chromium or vanadium pentoxide are used as catalysts to heat to 200°C to convert into furan. When the refined furfural is placed, due to the action of oxygen in the air, a series of complex reactions such as decomposition and polymerization occur, making the color darker. Heating or light can accelerate its decomposition and polymerization reactions.

3. Stability[22] Stable

4. Incompatible substances[23] Strong oxidizing agent, strong alkali

5. Conditions to avoid contact[24] Heat, light, contact with air

6. Aggregation hazards[25] Aggregation

Storage method

Storage Precautions[26] Store in a cool, ventilated warehouse. The storage temperature should not exceed 37?. Keep away from fire and heat sources. Store away from light, and the packaging must be sealed and not in contact with air. They should be stored separately from oxidants, alkalis, and food chemicals, and avoid mixed storage. It should not be stored in large quantities or for long periods of time. Use explosion-proof lighting and ventilation facilities. It is prohibited to use mechanical equipment and tools that are prone to sparks. storeThe area should be equipped with emergency spill response equipment and appropriate containment materials.

Synthesis method

1. It is obtained by hydrolyzing, dehydrating and distilling pentosan-rich agricultural waste, such as corn cobs, cottonseed hulls, rice bran and sugar beet pulp, with dilute acid.

2. Furfural was originally obtained from furfural. Agricultural and sideline products mostly contain polypentoses which undergo hydrolysis to generate furfural. The stems, bark, and shells of many crops contain polypentosides and can therefore be used as raw materials for the production of furfural. During production, raw materials such as corn cobs, cottonseed husks or sugarcane bagasse are treated with sulfuric acid and steam, and then steam distilled, layered, and distilled under reduced pressure to obtain a product with a purity of 99%. The recovery of furfural is related to the raw materials, the type and concentration of the acid and other conditions, and is usually quite different from the theoretical yield. There are two main methods for manufacturing furfural industrially. The pressurization method is suitable for large-scale production. The raw materials and dilute sulfuric acid are cooked under pressure, and the reaction product is taken out with high-pressure or superheated steam. After fractionation, the finished product of furfural is obtained; the normal pressure method is to combine the raw materials with inorganic salts such as salt and Boil with dilute sulfuric acid and steam out furfural at the same time.

3. Crush 100kg corn cobs into small pieces of 0.5~1cm2, add 25kg 90% sulfuric acid and 125kg salt and water to prepare a hydrolyzate. The volume is 2.5 times that of corn cob. After the corn cobs and hydrolyzate are stirred evenly, they are heated to boiling, and then the dilute solution of furfural begins to distill out, and is condensed and collected in a separator. Leave to stand for 1 to 2 hours to separate the aqueous phase and obtain crude furfural. Refined by steam distillation to obtain pure product.

Refining method: Furfural is produced when placed The acidic substances and resins can be removed by washing with water and distilling under reduced pressure. It can also be dried with calcium chloride, anhydrous magnesium sulfate or anhydrous sodium sulfate and then distilled under reduced pressure. The recovery method of used furfural is steam distillation followed by fractionation. Other refining methods include distillation in the presence of 7% sodium carbonate, distillation with 2% sodium carbonate added to the distillate, and finally fractionation under reduced pressure at 800 Pa to obtain the pure product.

Purpose

1. Furfural is a raw material for preparing a variety of drugs and chemical products, such as 2-furancarboxylic acid, furan, and tetrahydrofuran. 1,4-dichlorobutane can be produced from tetrahydrofuran, which is then substituted with a cyano group and then hydrogenated to obtain 1,6-hexanediamine, which is the basic raw material for the synthesis of nylon 66. Furfural can also be used to produce nitrofuracil, furanocrolein, furanoacrylic acid, furfuryl alcohol, etc., which are important raw materials for the synthesis of medicines, pesticides, veterinary drugs, dyes, spices and other products.

2. It is used as an extraction agent to extract unsaturated hydrocarbons from hydrocarbon mixtures, extract butadiene from C4 hydrocarbons, and extract aromatic hydrocarbons from a mixture of aliphatic hydrocarbons and aromatic hydrocarbons. It is also used for the refining of lubricants, natural oils, crude anthracene, etc., the concentration of vitamins A and D, and the solvent of natural resins. In addition, furfural is also used in the preparation of furan resins, electrical insulation materials, varnishes, nitrofuracil, maleic anhydride, tetrahydrofuran, furfuryl alcohol, etc.

3. Determination of cobalt and determination of sulfate. Reagents for the determination of aromatic amines, acetone, alkaloids, vegetable oils and cholesterol. Use as a standard when measuring pentoses and polypentoses. Synthetic resin, refined organic matter, nitrocellulose solvent, dichloroethane extractant.

4. Used as a chromogenic reagent for the determination of carbamates by thin layer chromatography. It is also used as a standard reagent for the determination of pentoses and polypentoses. And used in organic synthesis and as solvent.

5. Used as a solvent, and as an intermediate for the synthesis of fragrances, furfuryl alcohol, and tetrahydrofuran. [27]

extended-reading:https://www.bdmaee.net/n-dimethylcyclohexylamine-2/
extended-reading:https://www.newtopchem.com/archives/526
extended-reading:https://www.newtopchem.com/archives/43944
extended-reading:https://www.bdmaee.net/22-dimorpholinodiethylether-3/
extended-reading:https://www.newtopchem.com/archives/category/products/page/78
extended-reading:https://www.newtopchem.com/archives/45078
extended-reading:https://www.newtopchem.com/archives/44222
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/DBU-octoate–SA102-Niax-A-577.pdf
extended-reading:https://www.cyclohexylamine.net/polyurethane-low-odor-catalyst-polyurethane-gel-type-catalyst/
extended-reading:https://www.bdmaee.net/nt-cat-pmdeta-catalyst-cas3855-32-1-newtopchem/

PRODUCT