Dibutyltin monooctyl maleate as a heat stabiliser for PVC: properties, applications and market insights

INTRODUCTION
Polyvinyl chloride (PVC), as one of the widely used plastics in the world, plays an important role in many industries such as construction, packaging, automotive and medical. However, PVC is highly susceptible to thermal degradation during processing, releasing hydrogen chloride (HCl), which not only reduces the physical properties of the product but also may cause environmental pollution problems. Therefore, heat stabilisers have become indispensable additives in PVC processing, among which Dibutyltin monooctyl maleate (DBMS) has become the focus of the industry due to its excellent heat stability and processing performance.

Chemical properties and structure
Dibutyltin maleate (DBMS) is an organotin compound with the molecular formula C18H34O4Sn. Its structure combines maleate and dibutyltin groups. This structure gives DBMS unique chemical properties, including good thermal stability and transparency, making it effective in preventing yellowing in PVC products and maintaining the colour and transparency of the material.

Thermal stability and processing performance
As a heat stabiliser, DBMS is able to inhibit the formation of HCl at PVC processing temperatures, thus preventing chain breakage reactions and slowing down the degradation process of PVC. Its efficient thermal stability means that the mechanical strength and appearance quality of PVC can be maintained even at high temperatures. In addition, DBMS provides some lubrication to improve the flow and processability of the PVC melt, reducing equipment wear and improving productivity.

Application areas
Dibutyltin monooctyl maleate is mainly used in PVC films, hoses, cables, profiles and other soft and semi-hard PVC products. Especially in transparent or light-coloured PVC products, the excellent transparency and colour stability of DBMS make it the first choice. DBMS also performs well in rigid PVC products that require high heat resistance, such as building materials and pipes, ensuring that the finished product maintains good physical properties and aesthetics over the long term.

Market dynamics and future trends
The global PVC heat stabiliser market continues to grow. As a high-end product, the market demand for Dibutyltin maleate (DBMS) is strongly influenced by environmental policies and consumers’ pursuit of high-quality products. In recent years, as concerns about the environmental and health risks of organotin compounds have increased, the market has gradually tended to look for safer and more environmentally friendly alternatives. Nevertheless, DBMS still has a place in certain high-performance PVC applications due to its unrivalled performance advantages.

Environmental and Health Considerations
While DBMS offers excellent thermal stabilisation, the environmental and health risks associated with organotin compounds in general cannot be ignored. International studies have shown that some organotin compounds can be toxic to aquatic organisms and pose a potential threat to human health. Therefore, manufacturers and users need to strictly comply with relevant regulations and take appropriate measures to minimise emissions and exposure risks.

Conclusion
As an efficient PVC heat stabiliser, the role of dibutyltin monooctyl maleate in improving the thermal stability and processing performance of PVC products should not be underestimated. In the face of increasingly stringent environmental standards and rising public health awareness, the industry needs to continue to explore and innovate to develop safer and more sustainable heat stabiliser solutions to meet the changing needs of the market in the future.

References and Data Updates
This article is written based on new data as of 2024. Considering the rapid changes in industry trends, readers are advised to further consult new industry reports and scientific studies for accurate information when citing specific data or cases.

Please note that the above is an overview constructed based on existing knowledge and is not a direct quote from literature or research reports. When used in academic writing or professional publications, new research and data should be adapted and cited accordingly.

Extended Reading:

CAS:2212-32-0 – Manufacturer of N,N-Dicyclohexylmethylamine and N,N-Dimethylcyclohexylamine – Shanghai Ohans Co., LTD

N,N-Dicyclohexylmethylamine – Manufacturer of N,N-Dicyclohexylmethylamine and N,N-Dimethylcyclohexylamine – Shanghai Ohans Co., LTD

bismuth neodecanoate/CAS 251-964-6 – Amine Catalysts (newtopchem.com)

stannous neodecanoate catalysts – Amine Catalysts (newtopchem.com)

polyurethane tertiary amine catalyst/Dabco 2039 catalyst – Amine Catalysts (newtopchem.com)

DMCHA – morpholine

N-Methylmorpholine – morpholine

Polycat 41 catalyst CAS10294-43-5 Evonik Germany – BDMAEE

Polycat DBU catalyst CAS6674-22-2 Evonik Germany – BDMAEE

Dibutyltin monooctyl maleate market analysis and price trends

Introduction

Dibutyltin monooctyl maleate (DBMS for short), as a type of PVC heat stabilizer, occupies an important position in the PVC processing industry because of its excellent thermal stability and processing characteristics. With the continuous development of the PVC market and increasingly stringent environmental protection requirements, the market performance and price trends of DBMS have become the focus of attention both inside and outside the industry.

Market Overview

Dibutyltin monooctyl maleate is mainly used in the production of PVC products, especially those that require high transparency and good thermal stability, such as films, hoses and cables. In recent years, as global PVC consumption has increased, the demand for DBMS has also increased. However, the environmental and health effects of organotin compounds have attracted widespread attention, prompting the industry to search for more environmentally friendly alternatives, which has had an impact on the market share and price of DBMS.

Price Trend

Looking back over the past few years, the price fluctuations of DBMS have been affected by a variety of factors, including raw material costs, progress in production technology, supply and demand relationships, and adjustments to environmental policies. At the beginning of 2023, an in-depth research report pointed out that the price trend of dibutyltin maleate is affected by the supply of upstream raw materials, production demand, and import and export market dynamics. With the maturity of production technology and large-scale production, costs have declined, but in certain periods, prices may rise due to fluctuations in raw material prices or tightening of environmental policies.

Influencing factors

  • Raw material cost: As an organotin compound, the production cost of DBMS is directly affected by the price of tin and monooctyl maleate. Fluctuations in the price of tin metal are directly related to the cost basis of DBMS.
  • Environmental protection policies: Restrictions and bans on organotin compounds are gradually increasing globally, especially environmental policies such as the EU REACH regulations, which have set strict standards for the production and use of DBMS, increasing compliance costs.
  • Technological innovation: The research and development of new stabilizers may affect the market position of DBMS. If the new thermal stabilizer has better performance or lower environmental impact, it may seize the DBMS part. market share.
  • Supply and demand relationship: The development of the PVC industry and the expansion of downstream application fields, such as changes in demand in the construction, automotive and medical industries, directly affect the supply and demand balance of DBMS.

Market Outlook

It is expected that the DBMS market will face a more complex environment in the next few years. On the one hand, as the PVC industry transforms towards higher quality and environmental protection, the demand for DBMS will continue to exist, especially in the field of high-end PVC products. On the other hand, tightening environmental regulations may limit its use in certain areas and push the market toward greener alternatives. Manufacturers need to pay close attention to market dynamics and adjust product structure and market strategies in a timely manner to cope with challenges and seize opportunities.

Conclusion

Market analysis of dibutyltin monooctyl maleate shows that although it faces challenges from environmental protection policies and technological progress, its application value in specific fields is still solid. Price trends are affected by many factors, and companies need to respond flexibly, optimize supply chain management, and strengthen technology research and development to maintain market competitiveness. In the future, the market performance of DBMS will depend on whether it can meet more stringent environmental standards while meeting performance requirements.


The above analysis is based on historical data and industry trends. Taking into account the complexity and uncertainty of the market environment, actual prices and market performance may vary depending on the specific time. Varies by region. Industry participants are advised to regularly monitor market dynamics and develop flexible business strategies to respond to future market changes.

Extended reading:

CAS:2212-32-0 – Manufacturer of N,N-Dicyclohexylmethylamine and N,N-Dimethylcyclohexylamine – Shanghai Ohans Co., LTD

N,N-Dicyclohexylmethylamine – Manufacturer of N,N-Dicyclohexylmethylamine and N,N-Dimethylcyclohexylamine – Shanghai Ohans Co ., LTD

bismuth neodecanoate/CAS 251-964-6 – Amine Catalysts (newtopchem.com)

stannous neodecanoate catalysts – Amine Catalysts (newtopchem.com)

polyurethane tertiary amine catalyst/Dabco 2039 catalyst – Amine Catalysts (newtopchem.com)

DMCHA – morpholine

N-Methylmorpholine – morpholine

Polycat 41 catalyst CAS10294-43-5 Evonik Germany – BDMAEE

Polycat DBU catalyst CAS6674-22-2 Evonik Germany – BDMAEE

Application of dibutyltin monooctyl maleate in soft PVC

Introduction

Dibutyltin monooctyl maleate (DBMS), as a high-performance organic tin heat stabilizer, is widely used in polyvinyl chloride (PVC) processing, especially in the production of soft PVC products. Its unique advantages make it the preferred material in the industry. This article aims to explore the application characteristics, mechanism of action and market prospects of DBMS in soft PVC.

Characteristics and challenges of soft PVC

Soft PVC obtains flexibility and elasticity by adding plasticizers such as phthalates, and is widely used in films, wires and cables, toys, medical supplies and other fields. However, soft PVC faces the risk of thermal and oxidative degradation during processing and use, which can lead to reduced material performance, discoloration, brittleness and other problems. Therefore, choosing the right heat stabilizer is crucial to extending the service life of soft PVC.

The mechanism and advantages of DBMS

The application of dibutyltin monooctyl maleate in soft PVC is mainly based on its following mechanism of action and characteristics:

  1. HCl absorption capacity: DBMS can effectively capture the hydrogen chloride (HCl) released during the decomposition of PVC, preventing it from further catalyzing the degradation reaction, thereby protecting the integrity of the PVC molecular chain.
  2. Free radical scavenging: During the thermal processing of PVC, DBMS can capture free radicals and prevent them from causing chain cleavage, thus improving the thermal stability of PVC.
  3. Antioxidant performance: DBMS can also provide a certain degree of antioxidant protection to prevent PVC from deteriorating due to oxidation during long-term use.
  4. Good compatibility: DBMS has good compatibility with PVC and plasticizers and will not affect the transparency and softness of soft PVC.

Application examples in soft PVC

In the production of soft PVC films, the addition of DBMS can significantly improve the film’s transparency and anti-yellowing ability, and extend its life for outdoor use. In the manufacturing of wire and cable insulation layers, DBMS can ensure the thermal stability of the material during processing and long-term use, and avoid electrical performance degradation caused by thermal degradation. In addition, the low toxicity of DBMS makes it an ideal choice among medical-grade soft PVC products that can meet strict hygiene and safety standards.

Market trends and prospects

With the increasing global awareness of environmental protection and health, the use of organotin compounds has been subject to certain restrictions. However, DBMS still has its place in some specific soft PVC applications due to its lower toxicity levels and excellent performance. In the future, the DBMS market will be affected by two factors: First, stricter environmental regulations may push the industry to shift to greener stabilizers; second, technological progress may lead to the development of alternatives with better performance and better environmental protection. . Despite the challenges, demand for DBMS in high-performance and specialty applications will continue, especially in soft PVC products with extremely high requirements for transparency, stability and safety.

Conclusion

Dibutyltin monooctyl maleate is an ideal heat stabilizer for soft PVC. Through its unique chemical properties and mechanism of action, it is an ideal thermal stabilizer for soft PVC. High-quality PVC products provide necessary protection, extend their service life, and improve product quality and performance. Facing the dual challenges of market and technology, the application of DBMS will pay more attention to its value in specific fields, while seeking harmonious coexistence with environmental protection trends to achieve sustainable development.


This analysis is based on current industry knowledge and practice. Taking into account the rapid development of the soft PVC market and stabilizer technology, future product formulas and market strategies may need to be adjusted based on new scientific research results and environmental protection requirements.

Extended reading:

CAS:2212-32-0 – Manufacturer of N,N-Dicyclohexylmethylamine and N,N-Dimethylcyclohexylamine – Shanghai Ohans Co., LTD

N,N-Dicyclohexylmethylamine – Manufacturer of N,N-Dicyclohexylmethylamine and N,N-Dimethylcyclohexylamine – Shanghai Ohans Co ., LTD

bismuth neodecanoate/CAS 251-964-6 – Amine Catalysts (newtopchem.com)

stannous neodecanoate catalysts – Amine Catalysts (newtopchem.com)

polyurethane tertiary amine catalyst/Dabco 2039 catalyst – Amine Catalysts (newtopchem.com)

DMCHA – morpholine

N-Methylmorpholine – morpholine

Polycat 41 catalyst CAS10294-43-5 Evonik Germany – BDMAEE

Polycat DBU catalyst CAS6674-22-2 Evonik Germany – BDMAEE

15253545556351