What are all the catalysts in the synthesis of polylactic acid?

The catalysts used in the synthesis of PLA are mainly as follows:

Tin catalysts: This is a class of catalysts commonly used in the synthesis of PLA, including tin, stannous chloride and stannous octanoate. Among them, stannous octanoate is considered to be the best catalyst. Under certain conditions, PLA synthesised using stannous octanoate as catalyst has excellent properties, such as no oxidation, discolouration, and the viscosity average molecular weight can reach a high level.
Metal catalysts: Metal catalysts also play an important role in the synthesis of PLA. These catalysts can promote the condensation reaction of lactic acid monomers, so as to effectively form PLA chains.
In addition to the common catalysts mentioned above, there are some other types of catalysts that may be used in the synthesis of PLA, but the exact catalyst to be used depends on factors such as the synthesis method, the reaction conditions, and the properties of the desired PLA. Therefore, when selecting a catalyst, various factors need to be considered in order to achieve the best synthesis results.

Please note that the selection and use of catalysts should follow the relevant safety regulations and operating procedures to ensure the safety and reliability of the experimental process. Meanwhile, with the continuous development of science and technology, new types of catalysts are emerging, so it may also be necessary to pay attention to the latest research results and technological advances in practical applications.

Recommended Related Reading:

Dabco NE1060/Non-emissive polyurethane catalyst

Non-emissive polyurethane catalyst/Dabco NE1060 catalyst

DMAPA

2-(2-Aminoethoxy)ethanol

Morpholine

TEDA

Jeffcat ZF-22

BDMAEE Exporter

N-Methylmorpholine

4-Formylmorpholine

How to prepare a solution of stannous toluene octanoate

To prepare the stannous octanoate toluene solution, the following steps may be followed:

Prepare the required materials and equipment including stannous octanoate, toluene solvent, containers, stirrers and suitable heating equipment.
Take an appropriate amount of the toluene solvent and pour it into the container and heat it to a suitable temperature to induce the dissolution process. The exact heating temperature should be determined according to the nature of the toluene solvent and stannous octanoate used to ensure that the temperature is not too high to cause volatilisation of the solvent or other unfavourable reactions.
Gradually add the corresponding proportion of stannous octanoate while mixing well with a stirrer. The amount of stannous octanoate added should be determined by the desired concentration of the solution.
Stir continuously until the stannous octanoate is completely dissolved in the toluene solvent and a homogeneous solution is formed.
Please note that the preparation process should be carried out in a safe manner, avoiding contact with skin and inhalation of harmful gases. Meanwhile, both stannous octanoate and toluene are chemical substances that need to be stored and used under suitable conditions to avoid reaction with other substances or causing environmental pollution.

In addition, the specific proportion and conditions of preparation may vary depending on the application requirements, nature of the materials or safety regulations. Therefore, in practice, it is recommended to refer to relevant chemical manuals, professional information or consult chemical experts to ensure the accuracy and safety of the formulation process.

Recommended Related Reading:

Dabco NE1060/Non-emissive polyurethane catalyst

Non-emissive polyurethane catalyst/Dabco NE1060 catalyst

DMAPA

2-(2-Aminoethoxy)ethanol

Morpholine

TEDA

Jeffcat ZF-22

BDMAEE Exporter

N-Methylmorpholine

4-Formylmorpholine

Calculation of catalysts in polyurethane soft foam formulations

The kinetics of the reaction between hydroxyl compounds and isocyanates – d (- NCO)/dt=K0 x (- NCO) x (- OH)
K1 is the forward reaction rate of the formation of complexes between isocyanates and hydroxyl compounds
K2 is the negative reaction rate of the formation of complexes between isocyanates and hydroxyl compounds
K3 is the forward reaction rate at which complexes react with hydroxyl compounds to form aminoformates and hydroxyl compounds.
K0=[K1 x K3 x (- OH)]/[K2+K3 x
Arrhenius equation
K=Ae ^ [- (Ea/RT)]
A: Exponential factor.
E=2.718
Ea: KJ/mol
R=8.31 (J/mol. K)
Calculation of reaction heat for the formation of functional groups such as urea, polyurethane, biuret, and urea formate:
Bond dissociation energy (KJ/mol)
C-N 205.1~251.2
C-C 230.2~293.0
C-O 293.0-314.0
N-H 351.6~406.0
C-H 364.9~393.5
O-H 422.8~460.5
C=C 418.6~523.3
C=O 594.1~694.9
Reaction formula:
RNCO+rOH ? RNHCOOr
RNCO+HOH ? RNHCOOH+RNCO ? RNHCONHR+OCO ?
RNHCOOr+RNCO ? RNCONHRCOOr
RNHCONHr+RNCO ? RNCONHRCONHr
The volume ratio of gas to the total volume of the polymerization system (Vg/Vo) in the polymerization system affects the temperature control ability: gas monomers affect the concentration (mol/L), which affects the polymerization heat [Q (KJ/L)=Rp (mol/L) * (- H)]. The heat of polymerization is transferred to the gas dispersion medium, causing the gas to absorb heat and expand (PV=NR/T). After a sudden increase in temperature in the polymerization system, the gas releases and carries away a large amount of heat (approximately in a straight line with Vg/Vo)
When preparing polyurethane in one step, the activation energy of amino acids is about 60 (mol. K), and the activation energy of urea reaction is 17 (mol. K)
The foam system is easier to implement than the solution suspension system. Dispersive polymerization exhibits the Norrish Tromasof effect at the beginning of the reaction, slowing down the rate of change of chain growth parameters over time and improving the monodispersity of the product.
Dispersion polymerization is a method of separating the polymerization system into numerous fine foam by gas, so that the polymerization components can be converted into the surface liquid film of foam and the “polyhedral boundary liquid cell” connecting multiple liquid films can form a special dispersion phase for polymerization.
The foam system uses gas as the dispersion medium, and the gas expands and cools suddenly when it is heated, and the negative pressure generated when the gas escapes will further polymerize the residual single concentration of the system, and accelerate and carry the evaporation of water molecules and the removal of small molecules.
The dispersion effect of gas on the polymerization system is not equivalent to true dilution of monomers.
General formula for half-life of non first-order reactions
T=[2 ^ (n-1) -1]/[a x k x (n-1) x A ^ (n-1)]
Second order reaction rate constant
A+B ? Q+S
Kt=[1/(CA0-CB0)] x ln [(CB0 x CA)/(CA0 x CB)]
CA0 x Kt=[1/(1-M)] x ln {[M (1-xA)]/(M-xA)}, where M=CB0/CA0
Attachment:
Example of calculating the density of polyurethane soft foam
General polyether ternary alcohol Ppg: 50pop: 50tdi-80:42.8hoh: 3.17L-580:1a33:0.34sn: 0.17
Calculated: 4.34 2.17 6.51 38.2 112% 17% 5.2 1.74 122 Recalculated, 28kg/cubic meter
Example of calculation for polyurethane soft foam catalyst:
Universal polyether ternary alcohol ppg: 90 pop: 10 tdi-80:: 35.5 hoh: 2.2 L-580:0.84 Black slurry: 6
Calculated: A33:0.18 T-9:0.25
A33:0.14 T-9:0.24
A33:0.13 T-9:0.35
A33:0.12 T-9:0.30
Tolerance and turning points
Calculation of vertical foam flow rate and lifting speed:
Formula (for example only) PPG: 100, TDI: 80, HOH: 6, SI: 1.5, A33: * * *, SN: * * *, MC: 14.8
The diameter of the vertical bubble circular mold is 1.25.
Polyether flow rate is 12 kilograms per minute.
What is the speed of improvement in meters per minute
Calculate the formula density of 12 kilograms per cubic meter. The total weight of the formula is 173.5 kilograms. The formula volume is 14.46 cubic meters. Circular mold cross-sectional area: 1.23 square meters.
Set a loss rate of 5%.
Boosting speed: [14.46 x 12% x (1-5%)]/1.23=1.34 meters per minute.
Related reading recommendations:

NT CAT U26

NT CAT K-15

NT CAT D60

TMPEDA

TEDA

Morpholine

2-(2-Aminoethoxy)ethanol

N-Methylmorpholine

4-Formylmorpholine

dimethomorph

3-morpholinopropylamine

4-Acryloylmorpholine

PRODUCT