Method for improving the durability of polyurethane coatings by N,N-dimethylcyclohexylamine

Methods for N,N-dimethylcyclohexylamine to improve the durability of polyurethane coating

Introduction

Polyurethane coatings are widely used in construction, automobile, ship, furniture and other fields due to their excellent mechanical properties, chemical resistance and weather resistance. However, with the complexity of the use environment and the extension of the use time, the durability problem of the polyurethane coating gradually emerges. To improve the durability of polyurethane coatings, researchers continue to explore new additives and modification methods. As a highly efficient catalyst and modifier, N,N-dimethylcyclohexylamine (DMCHA) has gradually attracted attention in recent years. This article will introduce in detail the mechanism of N,N-dimethylcyclohexylamine in improving the durability of polyurethane coatings, its usage methods, product parameters and practical application cases.

I. Basic properties of N,N-dimethylcyclohexylamine

1.1 Chemical structure

N,N-dimethylcyclohexylamine (DMCHA) is an organic amine compound with its chemical structure as follows:

 CH3
       |
  N-CH3
   /
  /
 /
| |
        /
       /
      /
     /
     C

1.2 Physical Properties

Properties value
Molecular formula C8H17N
Molecular Weight 127.23 g/mol
Boiling point 160-162°C
Density 0.85 g/cm³
Flashpoint 40°C
Solution Easy soluble in organic solvents

1.3 Chemical Properties

N,N-dimethylcyclohexylamine has strong basicity and can react with acid to form salts. In addition, it also has good catalytic properties and can accelerate the reaction between isocyanate and hydroxyl groups in the polyurethane reaction.

2. The mechanism of action of N,N-dimethylcyclohexylamine in polyurethane coating

2.1 Catalysis

N,N-dimethylcyclohexylamine, as a highly efficient catalyst, can significantly accelerate the reaction between isocyanate and hydroxyl groups in the polyurethane reaction. The catalytic mechanism is as follows:

  1. Activated isocyanate: The nitrogen atom in N,N-dimethylcyclohexylamine has a lone pair of electrons and can form coordination bonds with the carbon atoms in the isocyanate to activate isocyanate.
  2. Promote reaction: Activated isocyanates are more likely to react with hydroxyl groups to form polyurethane chains.

2.2 Modification effect

N,N-dimethylcyclohexylamine not only has a catalytic effect, but also can modify the polyurethane coating by cyclohexyl groups in its molecular structure. The specific functions are as follows:

  1. Improving Crosslinking Density: N,N-dimethylcyclohexylamine can react with isocyanate groups in the polyurethane chain to form a crosslinking structure, thereby increasing the crosslinking density of the coating.
  2. Enhanced Mechanical Performance: The increase in crosslinking density significantly improves the mechanical properties of polyurethane coatings (such as hardness, wear resistance).
  3. Improving chemical resistance: The formation of crosslinked structures reduces the permeability of the polyurethane coating to chemical substances, thereby improving the chemical resistance of the coating.

III. Methods for using N,N-dimethylcyclohexylamine

3.1 Addition amount

The amount of N,N-dimethylcyclohexylamine added has a significant impact on the performance of the polyurethane coating. Generally speaking, it is more appropriate to add between 0.1% and 1.0%. The specific amount of addition should be adjusted according to the specific application environment and performance requirements of the coating.

Application Environment Recommended addition (%)
General Environment 0.1-0.3
High humidity environment 0.3-0.5
High chemical corrosion environment 0.5-1.0

3.2 Adding method

N,N-dimethylcyclohexylamine can be added to the polyurethane coating in two ways:

  1. Direct addition: Add N,N-dimethylcyclohexylamine directly to the polyurethane prepolymer, stir evenly and then coat.
  2. Premix: Premix N,N-dimethylcyclohexylamine with polyurethane prepolymer in advance to form a stable mixture before coating.

3.3 Notes

  1. Storage conditions: N,N-dimethylcyclohexylamine should be stored in a cool and dry environment to avoid contact with acids.
  2. Safe Operation: N,N-dimethylcyclohexylamine has a certain irritation. Protective gloves and masks should be worn during operation to avoid direct contact with the skin and inhalation of steam.

IV. Practical application cases of N,N-dimethylcyclohexylamine to improve the durability of polyurethane coating

4.1 Building exterior wall coating

In building exterior paints, polyurethane coatings need to have excellent weather resistance and chemical resistance. By adding N,N-dimethylcyclohexylamine, the crosslinking density of the coating can be significantly improved, thereby enhancing its weathering and chemical resistance.

Performance metrics DMCHA not added Add DMCHA (0.3%)
Weather resistance (hours) 1000 1500
Chemical resistance (grade) 3 5

4.2 Automotive Paint

Auto paints need to have excellent wear resistance and corrosion resistance. By adding N,N-dimethylcyclohexylamine, the cross-linking density of the coating can be improved, thereby enhancing its wear resistance and corrosion resistance.

Performance metrics DMCHA not added Add DMCHA (0.5%)
Abrasion resistance (times) 500 800
Corrosion resistance (grade) 4 6

4.3 Marine coating

Marine coatings need to have excellent water resistance and salt spray resistance. By adding N,N-dimethylcyclohexylamine, the cross-linking density of the coating can be improved, thereby enhancing its water resistance and resistance.Salt spray.

Performance metrics DMCHA not added Add DMCHA (0.7%)
Water resistance (hours) 500 1000
Salt spray resistance (grade) 3 5

V. Product parameters of N,N-dimethylcyclohexylamine

5.1 Product Specifications

parameters value
Appearance Colorless transparent liquid
Purity ?99%
Moisture ?0.1%
Acne ?0.1 mg KOH/g
Flashpoint 40°C
Packaging 25kg/barrel

5.2 Product Advantages

  1. High-efficiency Catalysis: N,N-dimethylcyclohexylamine has efficient catalytic properties and can significantly accelerate the polyurethane reaction.
  2. Enhanced Performance: By increasing the crosslink density, the mechanical properties and chemical resistance of the polyurethane coating are significantly enhanced.
  3. Widely used: suitable for polyurethane coatings in construction, automobiles, ships and other fields.

VI. Conclusion

N,N-dimethylcyclohexylamine, as a highly efficient catalyst and modifier, plays a significant role in improving the durability of polyurethane coatings. By reasonably adding N,N-dimethylcyclohexylamine, the crosslinking density of the polyurethane coating can be significantly improved, thereby enhancing its mechanical properties, chemical resistance and weather resistance. In practical applications, N,N-dimethylcyclohexylamine has been widely used in polyurethane coatings in the fields of construction, automobiles, ships, etc., and has achieved good results. In the future, with the deepening of research, N,N-dimethylcyclohexylamine is coated in polyurethaneThe application prospects in the layer will be broader.

7. Appendix

7.1 FAQ

Q1: How to determine the amount of N,N-dimethylcyclohexylamine added?

A1: The amount of N,N-dimethylcyclohexylamine added should be adjusted according to the specific application environment and performance requirements of the coating. Generally speaking, it is more appropriate to add between 0.1% and 1.0%.

Q2: What are the storage conditions for N,N-dimethylcyclohexylamine?

A2: N,N-dimethylcyclohexylamine should be stored in a cool and dry environment to avoid contact with acids.

Q3: What are the safe operation precautions for N,N-dimethylcyclohexylamine?

A3: N,N-dimethylcyclohexylamine has certain irritation. Protective gloves and masks should be worn during operation to avoid direct contact with the skin and inhalation of steam.

7.2 Product Parameters Table

parameters value
Appearance Colorless transparent liquid
Purity ?99%
Moisture ?0.1%
Acne ?0.1 mg KOH/g
Flashpoint 40°C
Packaging 25kg/barrel

7.3 Application Case Table

Application Fields Performance metrics DMCHA not added Add DMCHA (0.3%)
Building exterior wall coating Weather resistance (hours) 1000 1500
Building exterior wall coating Chemical resistance (grade) 3 5
Auto paint Abrasion resistance (times) 500 800
Auto paint Corrosion resistance (grade) 4 6
Ship Coating Water resistance (hours) 500 1000
Ship Coating Salt spray resistance (grade) 3 5

Through the above content, we introduce in detail the mechanism of N,N-dimethylcyclohexylamine in improving the durability of polyurethane coatings, usage methods, product parameters and practical application cases. It is hoped that this article can provide valuable reference for researchers and engineering and technical personnel in related fields.

Extended reading:https://www.newtopchem.com/archives/category/products/page/25

Extended reading:https://www.newtopchem.com/archives/42570

Extended reading:<a href="https://www.newtopchem.com/archives/42570

Extended reading:https://www.cyclohexylamine.net/dabco-2040-low-odor-amine-catalyst/

Extended reading:https://www.bdmaee.net/dabco-mb20-bismuth-metal-carboxylate-catalyst-catalyst-dabco-mb20/

Extended reading:https://www.bdmaee.net/niax-a-107-delayed-amine-catalyst-momentive/

Extended reading:https://www.newtopchem.com/archives/39784

Extended reading:https://www.bdmaee.net/dabco-r-8020-catalyst-cas11125-17-8-evonik-germany/

Extended reading:https://www.newtopchem.com/archives/category/products/page/123

Extended reading:https://www.cyclohexylamine.net/non-emission-delayed-amine-catalyst-dabco-amine-catalyst/

Extended reading:https://www.newtopchem.com/archives/44713

Polyurethane synthesis technology under catalytic action of N,N-dimethylcyclohexylamine

Polyurethane synthesis technology under catalyzed by N,N-dimethylcyclohexylamine

1. Introduction

Polyurethane (PU) is a polymer material widely used in the fields of construction, automobile, furniture, shoe materials, etc. Its excellent physical properties and chemical stability make it one of the indispensable materials in modern industry. In the synthesis of polyurethane, the selection of catalyst is crucial. N,N-dimethylcyclohexylamine (N,N-Dimethylcyclohexylamine, referred to as DMCHA) plays an important role in polyurethane synthesis as a highly efficient catalyst. This article will introduce in detail the polyurethane synthesis technology under the catalytic action of N,N-dimethylcyclohexylamine, covering reaction mechanism, process parameters, product performance and other aspects.

2. Chemical properties of N,N-dimethylcyclohexylamine

N,N-dimethylcyclohexylamine is an organic amine compound with the molecular formula C8H17N and contains cyclohexyl and two methyl substituted amino groups in the structure. Its chemical properties are as follows:

Features Value/Description
Molecular Weight 127.23 g/mol
Boiling point 159-160 °C
Density 0.85 g/cm³
Solution Easy soluble in organic solvents, slightly soluble in water
Catalytic Activity Efficient catalyzing of the reaction between isocyanate and polyol

3. Basic principles of polyurethane synthesis

The synthesis of polyurethane is mainly achieved through addition polymerization reaction between isocyanate and polyol. During the reaction, the -NCO group of isocyanate reacts with the -OH group of the polyol to form a Urethane bond, thereby forming a polymer chain. The reaction equation is as follows:

R-NCO + R'-OH ? R-NH-CO-O-R'

Under the catalytic action of N,N-dimethylcyclohexylamine, the reaction rate is significantly improved and the reaction conditions are more mild.

4. Catalytic mechanism of N,N-dimethylcyclohexylamine

N,N-dimethylcyclohexylamine as a catalyst, mainly throughThe following two ways to promote reaction:

  1. Nucleophilic Catalysis: The nitrogen atom in DMCHA has a lone pair of electrons and can form a transition state with the -NCO group of isocyanate, reduce the reaction activation energy, and accelerate the reaction.
  2. Proton Transfer: DMCHA can promote proton transfer of -OH groups in polyols, making it easier to react with isocyanates.

5. Polyurethane synthesis process

5.1 Raw material preparation

The main raw materials for polyurethane synthesis include isocyanates, polyols and catalysts. The specific raw material parameters are as follows:

Raw Materials Type Molecular Weight Function
Isocyanate MDI (Diphenylmethane diisocyanate) 250.25 g/mol Provided-NCO Group
Polyol Polyether polyol 2000-6000 g/mol Provided-OH group
Catalyzer N,N-dimethylcyclohexylamine 127.23 g/mol Accelerating the reaction

5.2 Reaction conditions

The reaction conditions of polyurethane synthesis have an important impact on the performance of the final product. The following are typical reaction conditions:

parameters value
Reaction temperature 60-80 °C
Reaction time 1-3 hours
Catalytic Dosage 0.1-0.5 wt%
Isocyanate to polyol ratio 1:1 (molar ratio)

5.3 Process flow

  1. Preparation of prepolymers: to diversifyThe alcohol and isocyanate were mixed in proportion, and the catalyst DMCHA was added, and the reaction was carried out at 60-80°C for 1-2 hours to form a prepolymer.
  2. Chain Extended Reaction: Mix the prepolymer with a chain extender (such as ethylene glycol), continue to react for 30-60 minutes to form polymer chains.
  3. Post-treatment: After the reaction is completed, post-treatment steps such as defoaming and molding are carried out to obtain the final polyurethane product.

6. Product Performance

The polyurethane catalyzed by N,N-dimethylcyclohexylamine has excellent physical properties and chemical stability. The following are typical product performance parameters:

Performance value
Tension Strength 20-40 MPa
Elongation of Break 300-600%
Hardness (Shore A) 70-90
Heat resistance 120-150 °C
Chemical resistance Good

7. Application areas

Polyurethanes catalyzed by N,N-dimethylcyclohexylamine are widely used in the following fields:

Domain Application
Architecture Insulation materials, waterproof coatings
Car Seats, dashboards, seals
Furniture Sofa, mattress
Shoe Materials Soles, insoles
Electronic Packaging material, insulation layer

8. Process Optimization

In order to improve the performance and production efficiency of polyurethane, the process can be optimized by:

  1. Catalytic Dosage Optimization: Determine the best catalyst through experimentsDosage to avoid excessive or insufficient amount.
  2. Reaction temperature control: Accurately control the reaction temperature to avoid side reactions.
  3. Raw Material Selection: Select high-purity, high-quality isocyanates and polyols to ensure stable product performance.

9. Environmental protection and safety

In the process of polyurethane synthesis, the use of N,N-dimethylcyclohexylamine requires attention to environmental protection and safety issues:

  1. Sweep gas treatment: The waste gas generated during the reaction should be effectively treated to avoid environmental pollution.
  2. Personal Protection: Operators should wear protective equipment to avoid direct contact with catalysts and reactants.
  3. Waste Treatment: Reaction waste should be treated in accordance with environmental protection requirements to avoid causing harm to the environment and the human body.

10. Conclusion

N,N-dimethylcyclohexylamine, as a highly efficient catalyst, plays an important role in polyurethane synthesis. Through reasonable process control and optimization, polyurethane products with excellent performance can be prepared and widely used in various fields. In the future, with the continuous advancement of technology, polyurethane catalyzed by N,N-dimethylcyclohexylamine will exert its unique advantages in more fields.


The above is a detailed introduction to the polyurethane synthesis technology under the catalytic action of N,N-dimethylcyclohexylamine. Through this article, readers can fully understand the principles, processes, product performance and application fields of this technology, and provide reference for actual production and application.

Extended reading:https://www.bdmaee.net/catalyst-9727-9727/

Extended reading:https://www.bdmaee.net/n-dimethylcyclohexylamine-2/

Extended reading:<a href="https://www.bdmaee.net/n-dimethylcyclohexylamine-2/

Extended reading:https://www.bdmaee.net/nt-cat-dmp-30-catalyst-cas25441-67-9-newtopchem/

Extended reading:https://www.cyclohexylamine.net/high-efficiency-catalyst-pt303-polyurethane-catalyst-pt303/

Extended reading:https://www.bdmaee.net/n-butyltintrichloridemin-95/

Extended reading:https://www.bdmaee.net/wp-content/uploads/2021/05/1-6.jpg

Extended reading:https://www.cyclohexylamine.net/cas-83016-70-0-high-efficiency-reactive-foaming-catalyst/

Extended reading:https://www.bdmaee.net/wp-content/uploads/2022/08/33-12.jpg

Extended reading:https://www.bdmaee.net/jeffcat-dmp-catalyst-cas106-58-1-huntsman/

Extended reading:https://www.newtopchem.com/archives/category/products/page/65

High-efficiency polyurethane foaming system based on N,N-dimethylcyclohexylamine

High-efficiency polyurethane foaming system based on N,N-dimethylcyclohexylamine

Catalog

  1. Introduction
  2. Overview of polyurethane foaming system
  3. Properties of N,N-dimethylcyclohexylamine
  4. Polyurethane foaming system based on N,N-dimethylcyclohexylamine
  5. Product parameters and performance
  6. Application Fields
  7. Conclusion

1. Introduction

Polyurethane (PU) is a polymer material widely used in the fields of construction, automobile, furniture, packaging, etc. Its unique physical and chemical properties make it one of the indispensable materials in modern industry. Polyurethane foaming system is an important part of polyurethane materials, and its performance directly affects the quality of the final product. This article will introduce in detail the high-efficiency polyurethane foaming system based on N,N-dimethylcyclohexylamine (DMCHA), including its characteristics, product parameters, performance and application fields.

2. Overview of polyurethane foaming system

The polyurethane foaming system is mainly composed of polyols, isocyanates, catalysts, foaming agents, stabilizers, etc. Among them, the catalyst plays a key role in the foaming process, can accelerate the reaction rate, control the foaming process, and thus affect the performance of the final product.

2.1 Polyol

Polyols are one of the main components in the polyurethane foaming system. The molecular structure contains multiple hydroxyl groups (-OHs) and can react with isocyanate to form polyurethane. The type and molecular weight of the polyol have an important influence on the performance of the foaming system.

2.2 Isocyanate

Isocyanate is another major component in the polyurethane foaming system. Its molecular structure contains isocyanate groups (-NCO) and can react with polyols to form polyurethane. Commonly used isocyanates include diisocyanate (TDI), diphenylmethane diisocyanate (MDI), etc.

2.3 Catalyst

Catalytics play a role in accelerating the reaction in the polyurethane foaming system, and commonly used catalysts include tertiary amine compounds, organotin compounds, etc. N,N-dimethylcyclohexylamine (DMCHA) is a highly efficient tertiary amine catalyst, widely used in polyurethane foaming systems.

2.4 Foaming agent

Foaming agents play a role in generating bubbles in polyurethane foaming systems. Commonly used foaming agents include water, physical foaming agents (such as HCFC, HFC, etc.).

2.5 Stabilizer

Stablers play a role in stabilizing bubble structure in polyurethane foaming systems. Commonly used stabilizers include silicone oil, surfactants, etc.

3. Characteristics of N,N-dimethylcyclohexylamine

N,N-dimethylcyclohexylamine (DMCHA) is a highly efficient tertiary amine catalyst with the following characteristics:

3.1 High-efficiency Catalysis

DMCHA can significantly accelerate the reaction rate between polyols and isocyanates, shorten foaming time, and improve production efficiency.

3.2 Good solubility

DMCHA has good solubility in polyols and isocyanates, and can be evenly dispersed in the foaming system to ensure uniformity of the reaction.

3.3 Low odor

DMCHA has a lower odor, which can reduce odor during production and improve the working environment.

3.4 Environmental protection

DMCHA does not contain heavy metals and harmful substances, meets environmental protection requirements, and is suitable for green and environmentally friendly polyurethane foaming systems.

4. Polyurethane foaming system based on N,N-dimethylcyclohexylamine

The polyurethane foaming system based on N,N-dimethylcyclohexylamine has the advantages of high efficiency, environmental protection, low odor, etc., and is widely used in construction, automobile, furniture, packaging and other fields. The following are the composition and reaction mechanism of the foaming system.

4.1 Composition

Ingredients Proportion (%) Function
Polyol 50-70 React with isocyanate to form polyurethane
Isocyanate 30-50 React with polyol to form polyurethane
DMCHA 0.5-2 Catalyzer, accelerate reaction rate
Frothing agent 1-3 Create bubbles
Stabilizer 0.5-1.5 Stable bubble structure

4.2 Reaction mechanism

In the polyurethane foaming system, DMCHA as a catalyst can accelerate the reaction between polyol and isocyanate to form polyurethane. The reaction process is as follows:

  1. Reaction of polyols with isocyanate:
    [
    text{R-OH} + text{R’-NCO} xrightarrow{text{DMCHA}} text{R-O-CO-NH-R’}
    ]
    This reaction creates a polyurethane segment.

  2. Frost agent decomposition:
    The foaming agent (such as water) reacts with isocyanate to form carbon dioxide gas, producing bubbles:
    [
    text{H}_2text{O} + text{R’-NCO} xrightarrow{text{DMCHA}} text{R’-NH}_2 + text{CO}_2
    ]

  3. Bubbles are stable:
    Stabilizers (such as silicone oil) can stabilize the bubble structure, prevent bubbles from bursting or merging, and ensure uniformity of the foam.

5. Product parameters and performance

The polyurethane foaming system based on N,N-dimethylcyclohexylamine has excellent physical and chemical properties. The following are its main product parameters and properties.

5.1 Product parameters

parameters Value Range Unit
Density 20-200 kg/m³
Compressive Strength 100-500 kPa
Thermal conductivity 0.02-0.04 W/(m·K)
Closed porosity 85-95 %
Dimensional stability ±1 %
Temperature range -40 to +120 ?

5.2 Performance Features

  1. High compressive strength: The polyurethane foaming system based on DMCHA has high compressive strength and can withstand large external pressures, suitable for construction, automobile and other fields.

  2. Low thermal conductivity: This foaming system has a low thermal conductivity, can effectively insulate heat, and is suitable for insulation materials.

  3. High closed porosity: High closed porosity can effectively prevent moisture and gas penetration, and improve the durability and stability of the material.

  4. Good dimensional stability: This foaming system has good dimensional stability under temperature changes and can keep the shape from deformation.

  5. Wide use temperature range: This foaming system has good performance in the temperature range of -40? to +120? and is suitable for various environmental conditions.

6. Application areas

The polyurethane foaming system based on N,N-dimethylcyclohexylamine is widely used in the following fields:

6.1 Construction Field

  1. Insulation Material: This foaming system has low thermal conductivity and high closed porosity, and is suitable for insulation materials in exterior walls, roofs, floors and other parts of building.

  2. Sound insulation material: This foaming system has good sound insulation performance and is suitable for building sound insulation walls, sound insulation floors, etc.

6.2 Automotive field

  1. Seat Filling Material: This foaming system has high compressive strength and good comfort, and is suitable for car seat fill materials.

  2. Sound insulation and thermal insulation materials: This foaming system has good sound insulation and thermal insulation properties and is suitable for sound insulation and thermal insulation materials in automotive interiors, engine bays and other parts.

6.3 Furniture Field

  1. Sole filling material: This foaming system has high elasticity and good comfort, and is suitable for filling materials for sofas, mattresses and other furniture.

  2. Packaging Materials: This foaming system has good cushioning properties and is suitable for furniture packaging materials.

6.4 Packaging Field

  1. Buffer packaging material: This foaming system has good easeBrushing performance, suitable for buffer packaging materials for fragile products such as electronic products, glass products, etc.

  2. Insulation Packaging Materials: This foaming system has a low thermal conductivity and is suitable for packaging materials such as food and medicine that require insulation.

7. Conclusion

The high-efficiency polyurethane foaming system based on N,N-dimethylcyclohexylamine has the advantages of high-efficiency catalysis, environmental protection, low odor, etc., and is widely used in construction, automobile, furniture, packaging and other fields. The foaming system has excellent properties such as high compressive strength, low thermal conductivity, high closed porosity, good dimensional stability and a wide range of use temperatures, and can meet the needs of different fields. With the improvement of environmental protection requirements and technological advancement, the polyurethane foaming system based on N,N-dimethylcyclohexylamine will be widely used and developed in the future.

Extended reading:https://www.newtopchem.com/archives/1129

Extended reading:https://www.bdmaee.net/dabco-1028-catalyst-cas100515-56-6-evonik-germany/

Extended reading:https://www.newtopchem.com/archives/103

Extended reading:https://www.newtopchem.com/archives/category/products/page/133

Extended reading:https://www.morpholine.org/cas-616-47-7/

Extended reading:https://www.bdmaee.net/trimethylhydroxyethyl-bisaminoethyl-ether/

Extended reading:https://www.bdmaee.net/nt-cat-pmdeta-catalyst-cas3855-32-1-newtopchem/

Extended reading:https://www.bdmaee.net/benzyldimethylamine/

Extended reading:<a href="https://www.bdmaee.net/benzyldimethylamine/

Extended reading:https://www.newtopchem.com/archives/44421

Extended reading:https://www.bdmaee.net/wp-content/uploads/2022/08/FASCAT2001-catalyst-CAS301-10-0-Stannous-octoate.pdf

12